1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mademuasel [1]
3 years ago
11

Barry can run 3/8

Mathematics
2 answers:
Shkiper50 [21]3 years ago
3 0

Answer:

6/8

Step-by-step explanation:

we need to calculate 3/8 + 3/8 = 6/8

Gala2k [10]3 years ago
3 0

Answer:

3/4

Step-by-step explanation:

1 hour is 2 times 1/2 hour.

2 * 3/8 = 6/8 = 3/4

You might be interested in
Tell whether a triangle can have sides with the
Dmitry [639]

Answer:

3x+2 \ne x^2 \ne 2x for x = 4

Step-by-step explanation:

Given

Shape: Triangle

Dimension: 3x + 2, x^2 and 2x

x = 4

Required

Determine if it has equal sides

To do this, we simply substitute 4 for x in the given dimensions

<u>3x + 2</u>

3x + 2 = 3 * 4 + 2

3x + 2 = 12 + 2

3x + 2 = 14

<u>x^2 </u>

x^2 = 4^2

x^2 = 16

<u>2x</u>

<u></u>2x = 2 * 4<u></u>

2x = 8

3x+2 \ne x^2 \ne 2x for x = 4

8 0
3 years ago
Write the inequality given in the diagram below
dezoksy [38]

Step-by-step explanation:

it's either 3 or 2 probably

7 0
2 years ago
Area of the bounded curves y=x^2, y=√(7+x)
N76 [4]

Answer:

\displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Area of a Region Formula:                                                                                     \displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \left \{ {{y = x^2} \atop {y = \sqrt{7 + x}}} \right.

<u>Step 2: Identify</u>

<em>Graph the systems of equations - see attachment.</em>

Top Function:  \displaystyle y = \sqrt{7 + x}

Bottom Function:  \displaystyle y = x^2

Bounds of Integration: [-1.529, 1.718]

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute in variables [Area of a Region Formula]:                                   \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \int\limits^{1.718}_{-1.529} {x^2} \, dx
  3. [Right Integral] Integration Rule [Reverse Power Rule]:                             \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - \frac{x^3}{3} \bigg| \limits^{1.718}_{-1.529}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{1.718}_{-1.529} {\sqrt{7 + x}} \, dx - 2.88176

<u>Step 4: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 7 + x
  2. [<em>u</em>] Basic Power Rule [Derivative Rule - Addition/Subtraction]:                 \displaystyle du = dx
  3. [Limits] Switch:                                                                                               \displaystyle \left \{ {{x = 1.718 ,\ u = 7 + 1.718 = 8.718} \atop {x = -1.529 ,\ u = 7 - 1.529 = 5.471}} \right.

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] U-Substitution:                                                                               \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx= \int\limits^{8.718}_{5.471} {\sqrt{u}} \, du - 2.88176
  2. [Integral] Integration Rule [Reverse Power Rule]:                                       \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = \frac{2x^\Big{\frac{3}{2}}}{3} \bigg| \limits^{8.718}_{5.471} - 2.88176
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 8.62949 - 2.88176
  4. Simplify:                                                                                                         \displaystyle \int\limits^{1.718}_{-1.529} {\sqrt{7 + x} - x^2} \, dx = 5.74773

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

5 0
3 years ago
Which one is it pleaseee helppppp!
ladessa [460]

Answer:

-2/1

Step-by-step explanation:

i hope this helps :)

5 0
3 years ago
Read 2 more answers
The length of an object is measured as 84.8 centimeters. What is this measurement in scientific notation
Misha Larkins [42]
8.48 multiplied by 10 to the power of one
3 0
4 years ago
Other questions:
  • What are the solutions to the equation? x2−14x=15 Enter your answers in the boxes. x = and
    12·2 answers
  • Jamar has 90 cents in his pocket. One coin is a quarter, and the others are
    5·2 answers
  • (–6s2 + 12s – 8) – (3s2 + 8s – 6) =
    6·2 answers
  • Need help don’t understand
    9·1 answer
  • The length of a rectangle is twice the width. The area is 8 yd^2. Find the length and the width.
    12·1 answer
  • What is 100 x 1000? And Explain your reasoning for the brainliest.
    13·2 answers
  • How to solve V = 1/3 Ah for h
    8·1 answer
  • What is my decimal number if I have 8 in tenths place, 2 in thousandths place and 7 in hundreds place?
    14·1 answer
  • Need answer asap, will give brainliest.
    5·2 answers
  • Is 1 4/6 an irrational number ?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!