<em><u>Look</u></em><em><u> </u></em><em><u>at</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>attached</u></em><em><u> </u></em><em><u>picture</u></em><em><u>⤴</u></em>
<em><u>Hope</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>u</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Sorry If that’s not the answer!
ANSWER: 8/21
Step:
1. Find the GCF (Greatest Common Factor)
The two denominator which is the bottom number have to be the same ALWAYS when adding and subtracting the fraction. So to find the GCF, you keep multiplying until you see the same number, only use the bottom number to find the GCF
7: 7, 14, 21, 28
3: 3, 6, 9, 12, 15, 18, 21, 24, 27
GCF= 21
2. 5/7 -1/3
Multiple both to get 21
5/7 x 3/3 = 15/21
1/3 x 7/7 = 7/21
3. Sove
15/21 - 7/21
= 8/21
Answer:
A and C
Step-by-step explanation:
Let Triangle ABC is a right angle traingle.
From Option A
AB= 24, BC= 26 and AC=10
By Pythagorean Triplet
(AB)^2 + (AC)^2 = (24)^2 + (10)^2
= 576+100
(AB)^2 + (AC)^2 = 676 ---------------- (I)
(BC)^2 = 26^2 = 676 -------------------(ii)
From (I) and (ii)
(BC)^2 = (AB)^2 + (AC)^2
Therefore, the sides 10,24 and 26 are the sides of the right angle triangle.
From Option C
AB= 18, BC= 30 and AC=24
By Pythagorean Triplet
(AB)^2 + (AC)^2 = (18)^2 + (24)^2
= 324+576
(AB)^2 + (AC)^2 = 900---------------- (I)
(BC)^2 = 30^2 = 900 -------------------(ii)
From (I) and (ii)
(BC)^2 = (AB)^2 + (AC)^2
Therefore, the sides 18, 24 and 30 are the sides of the right angle triangle.
Answer:
QR and TS
Step-by-step explanation: