Y=1/3x - 6
Perpendicular means that the slope must be inverse. In your problem the slope is -3/1
So the inverse is 1/3
Answer:
![6^{\frac{1}{5} }=\sqrt[5]{6}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B1%7D%7B5%7D%20%7D%3D%5Csqrt%5B5%5D%7B6%7D)
![6^{\frac{7}{5} }=\sqrt[5]{6^7}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B7%7D%7B5%7D%20%7D%3D%5Csqrt%5B5%5D%7B6%5E7%7D)
![6^{\frac{1}{6} }=\sqrt[6]{6}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%3D%5Csqrt%5B6%5D%7B6%7D)
![7^{\frac{1}{2} }=\sqrt[2]{7}](https://tex.z-dn.net/?f=7%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%3D%5Csqrt%5B2%5D%7B7%7D)
![7^{\frac{5}{2} }=\sqrt[2]{7^5}](https://tex.z-dn.net/?f=7%5E%7B%5Cfrac%7B5%7D%7B2%7D%20%7D%3D%5Csqrt%5B2%5D%7B7%5E5%7D)
![6^{\frac{9}{2} }=\sqrt[2]{6^9}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B9%7D%7B2%7D%20%7D%3D%5Csqrt%5B2%5D%7B6%5E9%7D)
Step-by-step explanation:
A radical is the root operation for n roots such as square root or cuberoot in the form
. A fraction exponent
can be converted to the radical form.
![6^{\frac{1}{5} }=\sqrt[5]{6}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B1%7D%7B5%7D%20%7D%3D%5Csqrt%5B5%5D%7B6%7D)
![6^{\frac{7}{5} }=\sqrt[5]{6^7}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B7%7D%7B5%7D%20%7D%3D%5Csqrt%5B5%5D%7B6%5E7%7D)
![6^{\frac{1}{6} }=\sqrt[6]{6}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B1%7D%7B6%7D%20%7D%3D%5Csqrt%5B6%5D%7B6%7D)
![7^{\frac{1}{2} }=\sqrt[2]{7}](https://tex.z-dn.net/?f=7%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%3D%5Csqrt%5B2%5D%7B7%7D)
![7^{\frac{5}{2} }=\sqrt[2]{7^5}](https://tex.z-dn.net/?f=7%5E%7B%5Cfrac%7B5%7D%7B2%7D%20%7D%3D%5Csqrt%5B2%5D%7B7%5E5%7D)
![6^{\frac{9}{2} }=\sqrt[2]{6^9}](https://tex.z-dn.net/?f=6%5E%7B%5Cfrac%7B9%7D%7B2%7D%20%7D%3D%5Csqrt%5B2%5D%7B6%5E9%7D)
False. When simplified, 25:45 is equal to 5:9. Therefore, the two ratios are not equal
Answer:35%
Step-by-step explanation:not really sure if I'm right the way I did was I subtract $154.30 subtracted by $119.77 and my answer was $34.53 that I just added my decimal point and rounded to the nearest whole number
Cylinder: V = pi* r^2 * h
Pyramid = 1/3 * (area of base) * h
Cone = 1/3 * pi* r^2 * h