A cube has equal sides if they are 2÷ 1/2 each then L×W×H would be (2÷ 1/2)^3. To divide fractions we multiply the reciprocal.
2÷ 1/2 = 2/1 × 2/1 = 4
4×4 = 16×4= 64
answer is V = 64 inches cubed.
Answer:
y=-2
Step-by-step explanation:
you are solving for the variable y
add 3 to the opposite side, so it cancels out
y=-5+3
y=-2
Answer:
(
, 8 )
Step-by-step explanation:
the equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = 10x - 2 ← is in slope- intercept form
with slope m = 10
Parallel lines have equal slopes
then the tangent to the parabola with a slope of 10 is required.
the slope of the tangent at any point on the parabola is 
differentiate each term using the power rule
(a
) = na
, then
= 6x + 2
equating this to 10 gives
6x + 2 = 10 ( subtract 2 from both sides )
6x = 8 ( divide both sides by 6 )
x =
= 
substitute this value into the equation of the parabola for corresponding y- coordinate.
y = 3(
)² + 2
= (3 ×
) + 2
=
+ 
= 
= 8
the point on the parabola with tangent parallel to y = 10x - 2 is (
, 8 )
You did not include the questions, but I will give you two questions related with this same statement, and so you will learn how to work with it.
Also, you made a little (but important) typo.
The right equation for the annual income is: I = - 425x^2 + 45500 - 650000
1) Determine <span>the youngest age for which the average income of
a lawyer is $450,000
=> I = 450,000 = - 425x^2 + 45,500x - 650,000
=> 425x^2 - 45,000x + 650,000 + 450,000 = 0
=> 425x^2 - 45,000x + 1,100,000 = 0
You can use the quatratic equation to solve that equation:
x = [ 45,000 +/- √ { (45,000)^2 - 4(425)(1,100,000)} ] / (2*425)
x = 38.29 and x = 67.59
So, the youngest age is 38.29 years
2) Other question is what is the maximum average annual income a layer</span> can earn.
That means you have to find the maximum for the function - 425x^2 + 45500x - 650000
As you are in college you can use derivatives to find maxima or minima.
+> - 425*2 x + 45500 = 0
=> x = 45500 / 900 = 50.55
=> I = - 425 (50.55)^2 + 45500(50.55) - 650000 = 564,021. <--- maximum average annual income