1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
s2008m [1.1K]
3 years ago
9

Simplify as much as possible (and only have positive exponents)

Mathematics
1 answer:
svetoff [14.1K]3 years ago
6 0
Loading...
One moment...

You might be interested in
Given sin0= 3/7, and tan0 <0, what is the value of coso?
spin [16.1K]

sin θ = 3 / 7 = .429

sin^2 θ + cos^2 θ = 1      trig identity

9/49 + cos^2 θ = 1

cos^2 θ = 40 / 49 = .816       cos θ = .903

Check .429^2 + .903^2 = 1

cos .903 = 25.4 deg

In the second quadrant sin = +, cos = -, tan = -

So 25.4 deg in the second quadrant = 180 - 25.4 = 154.6 deg

Check:

sin 154.6 = .428

cos 154.6 = -.903

tan 154.6 = -.475

8 0
2 years ago
ON A STUDY GUIDE! HELP PLEASE!<br><br> What is the value of x? <br><br> 6m + 3 = 2m - 4 / 2
Masteriza [31]

Subtract 2m from both sides : 4m + 3 = -2

Subtract 3 from both sides : 4m = -1

Divide by 4 on both sides : m = -1/4

8 0
3 years ago
Read 2 more answers
Lines l and m are parallel. If the m∠1 = 45 degrees, which of the following angles does not measure 45 degrees? ∠2 ∠4 ∠7
Elena L [17]

Answer:

whats the answer

Step-by-step explanation:

6 0
3 years ago
Find a function f such that f''() = - 36x² + 302 – 14, f(0) = 9, f(1) = - 1.<br> f(x) =
hjlf

Answer:

−12x³+15x²-14x+9

After getting the integral, we replace the constant by 9

5 0
3 years ago
Solve the above que no. 55
aleksandr82 [10.1K]

Answer:

Let \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right), we proceed to prove the trigonometric expression by trigonometric identity:

1) \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right) Given

2) \left(1+\frac{\cos^{2}A}{\sin^{2}A} \right)\cdot \left(1+\frac{\sin^{2}A}{\cos^{2}A} \right)   \tan A = \frac{1}{\cot A} = \frac{\sin A}{\cos A}

3) \left(\frac{\sin^{2}A+\cos^{2}A}{\sin^{2}A} \right)\cdot \left(\frac{\cos^{2}A+\sin^{2}A}{\cos^{2}A} \right)    

4) \left(\frac{1}{\sin^{2}A} \right)\cdot \left(\frac{1}{\cos^{2}A} \right)    \sin^{2}A+\cos^{2}A = 1

5) \frac{1}{\sin^{2}A\cdot \cos^{2}A}

6) \frac{1}{\sin^{2}A\cdot (1-\sin^{2}A)}    \sin^{2}A+\cos^{2}A = 1

7) \frac{1}{\sin^{2}A-\sin^{4}A} Result

Step-by-step explanation:

Let \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right), we proceed to prove the trigonometric expression by trigonometric identity:

1) \left(1+\frac{1}{\tan^{2}A} \right)\cdot \left(1+\frac{1}{\cot^{2}A} \right) Given

2) \left(1+\frac{\cos^{2}A}{\sin^{2}A} \right)\cdot \left(1+\frac{\sin^{2}A}{\cos^{2}A} \right)   \tan A = \frac{1}{\cot A} = \frac{\sin A}{\cos A}

3) \left(\frac{\sin^{2}A+\cos^{2}A}{\sin^{2}A} \right)\cdot \left(\frac{\cos^{2}A+\sin^{2}A}{\cos^{2}A} \right)    

4) \left(\frac{1}{\sin^{2}A} \right)\cdot \left(\frac{1}{\cos^{2}A} \right)    \sin^{2}A+\cos^{2}A = 1

5) \frac{1}{\sin^{2}A\cdot \cos^{2}A}

6) \frac{1}{\sin^{2}A\cdot (1-\sin^{2}A)}    \sin^{2}A+\cos^{2}A = 1

7) \frac{1}{\sin^{2}A-\sin^{4}A} Result

4 0
3 years ago
Other questions:
  • How many possible weights are there between 10 and 20 pounds
    6·2 answers
  • Steve provides lawn care services in his neighborhood. For each lawn he charges a flat fee of 6 dollars for clean up and 10 doll
    14·1 answer
  • Nine fewer than half a number is five more than four times the number define a variable rate in equation and solve to find the n
    12·1 answer
  • 18 is 5% of what number
    13·2 answers
  • Plsssss help I don’t get this math at all and it’s due today plsss help meeeeee
    5·1 answer
  • Find the volume.<br><br><br> 576 ft3<br><br><br> 448 ft3<br><br><br> 640 ft3<br><br><br> 520 ft3
    7·1 answer
  • What is 8 x 10 to the 5 power<br> Ik this is easy but our teacher never taught us this
    14·1 answer
  • PLEASEEEE ANSWERRRR!!!!!!<br> Find the area of the shape shown below.
    6·2 answers
  • Multiply each pair of factors. type the product in the space provided
    6·2 answers
  • It is equally probable that the pointer on the spinner shown will land on any one of eight regions, numbered 1 through 8. If the
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!