Answer:
α² +β² = 3 4/9
Step-by-step explanation:
Assuming α and β are solutions to the equation, it can be factored as ...
(x -α)(x -β) = 0
Expanding this, we get ...
x² -(α +β)x +αβ = 0
Dividing the original equation by 3, we find ...
x² +(1/3)x -5/3 ≡ x² -(α+β)x +αβ ⇒ (α+β) = -1/3, αβ = -5/3
We know that the square (α+β)² can be expanded to ...
(α +β)² = α² +β² +2αβ
α² +β² = (α +β)² -2αβ . . . . . . subtract 2αβ
Substituting the values for (α+β) and αβ, we find the desired expression is ...
α² +β² = (-1/3)² -2(-5/3) = 1/9 +10/3 = 31/9
α² +β² = 3 4/9
Answer:
c
Step-by-step explanation:
if you follow the points, this is the only answer choice that doesnt repeat any line segments
Answer:
5
Step-by-step explanation:
Answer:
You are correct
Step-by-step explanation:
Start with 1 1/2. This can be made into an improper fraction which is 3/2
Now multiply both top and bottom of 3/2 by 5
(3*5)/(2 * 5) = 15 / 10
16/10 is just slightly bigger than 15/10
9514 1404 393
Answer:
37°
Step-by-step explanation:
The diagonals of a rhombus are angle bisectors. Angle 1 matches the other half of angle L.
∠1 = 37°
__
Angle 2 is the complement, 53°, and angle 3 is the same as angle 2, 53°.
The diagonals of a rhombus are perpendicular bisectors of each other, so angle 4 is 90°.