1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Drupady [299]
3 years ago
11

Test for exactness. If exact, solve it directly. Otherwise, use integrating factors to solve it. Solve the IVP (if given). 2xy +

(x^2) y' = 0
sin(x) cos(y) + cos(x) sin(y) y' = 0
(x^2) + (y^2) - 2xyy' = 0
e^(2x).(2 cos(y) - sin(y) y') = 0, where y(0) = 0​
Mathematics
1 answer:
tia_tia [17]3 years ago
6 0

• 2<em>xy</em> + <em>x</em> ² <em>y'</em> = 0

This DE is exact, since

∂(2<em>xy</em>)/∂<em>y</em> = 2<em>x</em>

∂(<em>x</em> ²)/∂<em>x</em> = 2<em>x</em>

are the same. Then there is a solution of the form <em>f(x, y)</em> = <em>C</em> such that

∂<em>f</em>/∂<em>x</em> = 2<em>xy</em>   ==>   <em>f(x, y)</em> = <em>x</em> ² <em>y</em> + <em>g(y)</em>

∂<em>f</em>/∂<em>y</em> = <em>x</em> ² = <em>x </em>² + d<em>g</em>/d<em>y</em>   ==>   d<em>g</em>/d<em>y</em> = 0   ==>   <em>g(y)</em> = <em>C</em>

==>   <em>f(x, y)</em> = <em>x</em> ² <em>y</em> = <em>C</em>

<em />

• sin(<em>x</em>) cos(<em>y</em>) + cos(<em>x</em>) sin(<em>y</em>) <em>y'</em> = 0

is also exact because

∂(sin(<em>x</em>) cos(<em>y</em>))/∂<em>y</em> = -sin(<em>x</em>) sin(<em>y</em>)

∂(cos(<em>x</em>) sin(<em>y</em>))/∂<em>x</em> = -sin(<em>x</em>) sin(<em>y</em>)

Then

∂<em>f</em>/∂<em>x</em> = sin(<em>x</em>) cos(<em>y</em>)   ==>   <em>f(x, y)</em> = -cos(<em>x</em>) cos(<em>y</em>) + <em>g(y)</em>

∂<em>f</em>/∂<em>y</em> = cos(<em>x</em>) sin(<em>y</em>) = cos(<em>x</em>) sin(<em>y</em>) + d<em>g</em>/d<em>y</em>   ==>   d<em>g</em>/d<em>y</em> = 0   ==>   <em>g(y)</em> = <em>C</em>

==>   <em>f(x, y)</em> = -cos(<em>x</em>) cos(<em>y</em>) = <em>C</em>

<em />

• <em>x</em> ² + <em>y</em> ² - 2<em>xyy'</em> = 0

is not exact:

∂(<em>x</em> ² + <em>y</em> ²)/∂<em>x</em> = 2<em>x</em>

∂(-2<em>xy</em>)/∂<em>y</em> = -2<em>x</em>

So we look for an integrating factor <em>µ(x, y)</em> such that

<em>µ</em> (<em>x</em> ² + <em>y</em> ²) - 2<em>µxyy'</em> = 0

becomes exact, which would require that these be equal:

∂(<em>µ</em> (<em>x</em> ² + <em>y</em> ²))/∂<em>y</em> = (<em>x</em> ² + <em>y</em> ²) ∂<em>µ</em>/∂<em>y</em> + 2<em>µy</em>

∂(-2<em>µxy</em>)/∂<em>x</em> = -2<em>xy</em> ∂<em>µ</em>/∂<em>x</em> - 2<em>µy</em>

Observe that if <em>µ(x, y)</em> = <em>µ(x)</em>, then ∂<em>µ</em>/∂<em>y</em> = 0 and ∂<em>µ</em>/∂<em>x</em> = d<em>µ</em>/d<em>x</em>, so we would have

2<em>µy</em> = -2<em>xy</em> d<em>µ</em>/d<em>x</em> - 2<em>µy</em>

==>   -2<em>xy</em> d<em>µ</em>/d<em>x</em> = 4<em>µy</em>

==>   d<em>µ</em>/<em>µ</em> = -2/<em>x</em> d<em>x</em>

Integrating both sides gives

∫ d<em>µ</em>/<em>µ</em> = ∫ -2/<em>x</em> d<em>x</em>   ==>   ln|<em>µ</em>| = -2 ln|<em>x</em>|   ==>   <em>µ</em> = 1/<em>x</em> ²

So in the modified DE, we have

(1 + <em>y</em> ²/<em>x</em> ²) - 2<em>y</em>/<em>x</em> <em>y'</em> = 0

which is now exact and ready to solve, since

∂(1 + <em>y</em> ²/<em>x</em> ²)/∂<em>y</em> = 2<em>y</em>/<em>x</em> ²

∂(-2<em>y</em>/<em>x</em>)/∂<em>x</em> = 2<em>y</em>/<em>x</em> ²

We get

∂<em>f</em>/∂<em>x</em> = 1 + <em>y</em> ²/<em>x</em> ²   ==>   <em>f(x, y)</em> = <em>x</em> - <em>y</em> ²/<em>x</em> + <em>g(y)</em>

∂<em>f</em>/∂<em>y</em> = -2<em>y</em>/<em>x</em> = -2<em>y</em>/<em>x</em> + d<em>g</em>/d<em>y</em>   ==>   d<em>g</em>/d<em>y</em> = 0   ==>   <em>g(y)</em> = <em>C</em>

==>   <em>f(x, y)</em> = <em>x</em> - <em>y</em> ²/<em>x</em> = <em>C</em>

<em />

• exp(2<em>x</em>) (2 cos(<em>y</em>) - sin(<em>y</em>) <em>y' </em>) = 0

is exact, since

∂(2 exp(2<em>x</em>) cos(<em>y</em>))/∂<em>y</em> = -2 exp(2<em>x</em>) sin(<em>y</em>)

∂(-exp(2<em>x</em>) sin(<em>y</em>))/∂<em>x</em> = -2 exp(2<em>x</em>) sin(<em>y</em>)

Then

∂<em>f</em>/∂<em>x</em> = 2 exp(2<em>x</em>) cos(<em>y</em>)   ==>   <em>f(x, y)</em> = exp(2<em>x</em>) cos(<em>y</em>) + <em>g(y)</em>

∂<em>f</em>/∂<em>y</em> = -exp(2<em>x</em>) sin(<em>y</em>) = -exp(2<em>x</em>) sin(<em>y</em>) + d<em>g</em>/d<em>y</em>   ==>   d<em>g</em>/d<em>y</em> = 0   ==>   <em>g(y)</em> = <em>C</em>

==>   <em>f(x, y)</em> = exp(2<em>x</em>) cos(<em>y</em>) = <em>C</em>

Given that <em>y</em> = 0 when <em>x</em> = 0, we find that

<em>C</em> = exp(0) cos(0) = 1

so that the particular solution is

exp(2<em>x</em>) cos(<em>y</em>) = 1

You might be interested in
The second digit after the decimal point in a number is 4. What is the value of 4 in the number? 1 thousandth 4 thousandths 1 hu
MrMuchimi

Answer:

D. 4 hundredths

Step-by-step explanation:

Hello!

The second digit after the decimal point is 4 is shown by

0.04

The points after a decimal point go tenths, hundredths, thousandths etc.

The answer is D. 4 hundredths

Hope this helps!

3 0
3 years ago
Read 2 more answers
2,381,579 expanded form
o-na [289]

2,000,000+300,000+80,000+1,000+500+70+9 is 2,381,579 in expanded form.

7 0
3 years ago
Read 2 more answers
What does perimeter mean?
Lady bird [3.3K]

Answer:

the continuous line forming the boundary of a closed geometric figure

Step-by-step explanation:

that is what perimeter means. if i understand the question correctly. sorry if i don't.

6 0
3 years ago
Read 2 more answers
0.0176165803 is estimated to what
bezimeni [28]
It most common to round to the hundredths place, this is two spaces after the decimal. 

So look two spaces right - 0.17. If the third digit (in this case 6) is higher than 5 you round the number up if its not, keep it the same. 

"6" is greater than five, so round it to about (or approximately) 0.18.
5 0
4 years ago
I need help With what the answer is
Marina CMI [18]

Answer:

OPTION C: y = 2x² + 1

Step-by-step explanation:

To identify the function substitute the values of 'x' and 'y' and compare LHS and RHS.

OPTION A: y = -(5x + 1)

When x = -2, y = 9

Therefore, LHS = 9

RHS = -(5(-2) + 1) = -(-10 + 1) = 9

So, LHS = RHS.

Now, we check for the second pair. i.e., (x, y) = (-1, 3)

LHS = 3

RHS = -(-5 + 1) = -(-4) = 4

LHS $ \ne $ RHS

So, this option is eliminated.

OPTION B: y = - 4x + 1

Like OPTION A, substitute x = -2 and y = 9.

LHS = 9

RHS = - 4(-2) + 1 = 9

LHS = RHS

Now for the second pair: (-1, 3)

LHS = 3

RHS = -4(-1) + 1 = 4 + 1 = 5

We see LHS $ \ne $ RHS.

So, this option is eliminated as well.

OPTION C: y = 2x² + 1

Substituting the first pair: (-2, 9)

LHS = 9

RHS = 2(4) + 1 = 9

So, LHS = RHS

Now For the second pair: (-1, 3)

We have LHS = 3

RHS = 2(1) + 1 = 3

LHS = RHS.

The third pair: (0, 1)

LHS = 1

RHS = 2(0) + 1 = 1

For the pair: (1, 3)

LHS = 3

RHS = 2(1) + 1 = 3

Again, LHS = RHS

For the pair: (2, 9)

LHS = 9

RHS = 2(4) + 1 = 9

Since, for all the pairs we have LHS and RHS equal, we con conclude that this is the correct representation of our function.

Similarly, substitute OPTION D. The option can be eliminated in the second pair itself.

So, the answer is OPTION C.

7 0
4 years ago
Other questions:
  • A computer store bought a coat of $10 and sold if for $13 find the percent increase
    8·1 answer
  • Two consecutive EVEN numbers have a sum of 30. What are the numbers?
    14·1 answer
  • Please help!!!!!
    13·2 answers
  • Solve the system.<br> y= 3x2−2x+3​<br> y = x + 3<br><br> The solutions are (__,__) and (__,__).
    12·1 answer
  • Which pairs of angles are alternate exterior angles? Choose all answers that are correct.
    8·2 answers
  • Laura swims 500 meters in 8 minutes.
    13·1 answer
  • Each week Cindy uses 2 ¼ pound of birdseed to feed her three parrots. How much birdseed does each parrot eat in one week?
    10·2 answers
  • 25/23 to the nearest hundred
    8·2 answers
  • Solve log2(x + 5) + log2(x − 5) = log211.
    11·2 answers
  • Find the missing side length
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!