Answer:
![\dfrac{\sqrt[12]{55296}}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B12%5D%7B55296%7D%7D%7B2%7D)
Step-by-step explanation:
Rationalize the denominator, then use a common root for the numerator.
![\dfrac{\sqrt[4]{6}}{\sqrt[3]{2}}=\dfrac{(2\cdot 3)^{\frac{1}{4}}}{2^{\frac{1}{3}}}\\\\=\dfrac{(2\cdot 3)^{\frac{1}{4}}}{2^{\frac{1}{3}}}\cdot\dfrac{2^{\frac{2}{3}}}{2^{\frac{2}{3}}}=\dfrac{2^{\frac{1}{4}+\frac{2}{3}}3^{\frac{1}{4}}}{2}\\\\=\dfrac{2^{\frac{11}{12}}3^{\frac{3}{12}}}{2}=\dfrac{\sqrt[12]{2^{11}3^{3}}}{2}\\\\=\dfrac{\sqrt[12]{55296}}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B4%5D%7B6%7D%7D%7B%5Csqrt%5B3%5D%7B2%7D%7D%3D%5Cdfrac%7B%282%5Ccdot%203%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%7B2%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%5C%5C%5C%5C%3D%5Cdfrac%7B%282%5Ccdot%203%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%7B2%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%5Ccdot%5Cdfrac%7B2%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%7B2%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%3D%5Cdfrac%7B2%5E%7B%5Cfrac%7B1%7D%7B4%7D%2B%5Cfrac%7B2%7D%7B3%7D%7D3%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%7B2%7D%5C%5C%5C%5C%3D%5Cdfrac%7B2%5E%7B%5Cfrac%7B11%7D%7B12%7D%7D3%5E%7B%5Cfrac%7B3%7D%7B12%7D%7D%7D%7B2%7D%3D%5Cdfrac%7B%5Csqrt%5B12%5D%7B2%5E%7B11%7D3%5E%7B3%7D%7D%7D%7B2%7D%5C%5C%5C%5C%3D%5Cdfrac%7B%5Csqrt%5B12%5D%7B55296%7D%7D%7B2%7D)
Answer:
6 packages of forks
Step-by-step explanation:
If Jasmine wants to have an equal quantity of forks and spoons, we need to list the multiples of each quantity and determine the least common multiple (LCM).
Forks: 10, 20, 30, 40, 50, 60, 70, 80, 90
Spoons: 12, 24, 36, 48, 60, 72, 84, 96
The LCM in this example is 60. In order to have exactly 60 forks and 60 spoons, Jasmine will need to buy 6 packages of forks [60 ÷ 10 = 6] and 5 packages of spoons [60 ÷ 12 = 5].
Answer: 
Step-by-step explanation:
Some transformations for a function f(x) are shown below:
If
, the function is translated up "k" units.
If
, the function is translated down "k" units.
If
, the function is reflected across the x-axis.
If
, the function is reflected across the y-axis.
Therefore, knowing those transformations and given the exponential parent function:

If it is reflected across the y-axis and the it is translated down 4 units, we can determine that the resulting function is:

Answer:
cheryl
Step-by-step explanation: