The correct answer would be D., a a right triangle inscribed inside a circle. I just barely did what the instructions said, and it was right. :P
I hope you find this helpful, feel free to mark as brainliest, and good luck! (:
Well, i would use the distance formula to find the distance between the two points. Only issue- you do not have the other point, so lets find it!
We have the point 4,6. 4 is the x, and 6 is the y.
Lets start with 4 since the x works with the left and right aspect of the location. It says M has been translated 8 units to the left, meaning we go back 8. So if we are at 4, and we go back (A.K.A. Subtract) 8, we will be at -4.
Now lets move onto the y, which works with the up and down aspect of the location. It says M has been translated 9 unites down, meaning the point will be heading down and getting smaller. So if we are at 6, and we go down (A.K.A. subtract) 9, then we will be at -3.
So now we have the coordinates of point M (4,6) and point M' (-4,-3) so we can now complete the distance formula!
The distance formula helps determine the distance between two points. It looks like this: D = √(x₂-x₁)²+(y₂-y₁)²
Though it does not matter which order you use the coordinates in, i am choosing to use M and then M'.
So, starting with the X, X₂ will be -4 and X₁ will be 4.
Again, starting with the Y, Y₂ will be -3 and Y₁ will be 6.
So, the formula plugged in will look like this: d = √(-4 - 4)² + (-3 - 6)²
Solving it out, we first need to work within the parenthesis. Can you solve it?
Our outcome will be this: -8² + -9². But, since we are squaring (And a negative times a negative equals a positive) you can just write 8² + 9²
8²= 64
9²= 81
64+81 = 145.
So, the distance between point M and point M' would be 145 units
Hope this helps!
If it does not, please let me know so i can try to help!
Answer:
Step-by-step explanation:
d(x)=√((x-2)2+(y-0)²)
=√((x-2)²+y²)
=√((x-2)²+(x-1)²)
=√(x²-4x+4+x²-2x+1)
=√(2x²-6x+5)
D=d²(x)=2x²-6x+5

Answer:
1250 m²
Step-by-step explanation:
Let x and y denote the sides of the rectangular research plot.
Thus, area is;
A = xy
Now, we are told that end of the plot already has an erected wall. This means we are left with 3 sides to work with.
Thus, if y is the erected wall, and we are using 100m wire for the remaining sides, it means;
2x + y = 100
Thus, y = 100 - 2x
Since A = xy
We have; A = x(100 - 2x)
A = 100x - 2x²
At maximum area, dA/dx = 0.thus;
dA/dx = 100 - 4x
-4x + 100 = 0
4x = 100
x = 100/4
x = 25
Let's confirm if it is maximum from d²A/dx²
d²A/dx² = -4. This is less than 0 and thus it's maximum.
Let's plug in 25 for x in the area equation;
A_max = 25(100 - 2(25))
A_max = 1250 m²