5 quarters = $0.25 x 5 = $1.25
25 x 5 = 125
0.25 x 5 = 1.25
$0.25 x 5 = $1.25
Sin(4x) - sin(8x)
sin(2(2x)) - sin(2(4x))
2sin(2x)cos(2x) - 2sin(4x)cos(4x)
2[sin(x)cos(x)][cos²(x) - sin²(x)] - [2sin(2(2x))cos(2(2x))]
{2[sin(x)cos³(x) - sin³(x)cos(x)]} - [2[2sin(2x)cos(2x)][cos²(x) - sin²(x)]]
[2sin(x)cos³(x) - 2sin³(x)cos(x)] - {[2[2[sin(x)cos(x)][cos²(x) - sin²(x)]][cos²(x) - sin²(x)]}
[2sin(x)cos³(x) - 2sin³(x)cos(x)] - [2[2[sin(x)cos(x)][cos⁴(x) - 2cos²(x)sin²(x) - sin⁴(x)]]]]
[2sin(x)cos³(x) - 2sin³(x)cos(x)] - [2[2[sin(x)cos⁵(x) - 2sin³(x)cos³(x) + sin⁵(x)cos(x)]]]
2sin(x)cos³(x) - 2sin³(x)cos(x) - 4sin(x)cos⁵(x) + 8sin³(x)cos³(x) - 4sin⁵(x)cos(x)
If I am reading the question correctly it would come out to -6x+42 First do all the addition and squaring, then factor in that negative. You come out to -2x^3 +2x^3-4x-2x+25+5+9+3. The x^3's cancel, the -x's add to -6x, then all that other adds to 42.
9 inches
a^2=b^2+c^2
a=41 inches
b=40 inches