1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shtirlitz [24]
3 years ago
12

Domain and range of 10x - 2y = 4

Mathematics
1 answer:
Anna71 [15]3 years ago
5 0

Answer:

domain: (-∞,∞)

range: (-∞,∞)

Step-by-step explanation:

You need to convert this into a linear equation (y=mx+b)

So we add 2y and divide by 2 to get y by itself

that gives us 5x-2=y

If you pictures this graph in your head you'll see that the domain and range are all real numbers

You might be interested in
Please help me to prove this!<br>I need is no.(c). So, please help me do it.<br>​
zloy xaker [14]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = 90°                  → A + B = 90° - C

                                                     → C = 90° - (A + B)

Use the Double Angle Identity:      cos 2A = 1 - 2 sin² A

                                                       → sin² A = (1 - cos 2A)/2

Use Sum to Product Identity: cos A + cos B = 2 cos [(A + B)/2] · cos [(A - B)/2]

Use the Product to Sum Identity: cos (A - B) - cos (A + B) = 2 sin A · sin B

Use the Cofunction Identities:      cos (90° - A) = sin A

                                                       sin (90° - A) = cos A

<u>Proof LHS → RHS:</u>

LHS:                       sin² A + sin² B + sin² C

\text{Double Angle:}\qquad \dfrac{1-\cos 2A}{2}+\dfrac{1-\cos 2B}{2}+\sin^2 C\\\\\\.\qquad \qquad \qquad =\dfrac{1}{2}\bigg(2-\cos 2A-\cos 2B\bigg)+\sin^2 C\\\\\\.\qquad \qquad \qquad =1-\dfrac{1}{2}\bigg(\cos 2A+\cos 2B\bigg)+\sin^2 C

\text{Sum to Product:}\quad 1-\dfrac{1}{2}\bigg[2\cos \bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A-2B}{2}\bigg)\bigg]+\sin^2 C\\\\\\.\qquad \qquad \qquad =1-\cos (A+B)\cdot \cos (A-B)+\sin^2 C

Given:                1 - cos (90° - C) · cos (A - B) + sin² C

Cofunction:       1 - sin C · cos (A - B) + sin² C

Factor:               1 - sin C [cos (A - B) + sin C]

Given:                1 - sin C[cos (A - B) - sin (90° - (A + B))]

Cofunction:       1 - sin C[cos (A - B) - cos (A + B)]

Sum to Product:       1 - sin C [2 sin A · sin B]

                            = 1 - 2 sin A · sin B · sin C

LHS = RHS: 1 - 2 sin A · sin B · sin C = 1 - 2 sin A · sin B · sin C   \checkmark

6 0
3 years ago
Follow me Insta gram<br>x x a u r o r a _ a n i m e (don't space the letter's)​
MA_775_DIABLO [31]

Answer:

you like anime? we'll be bffs then

3 0
3 years ago
What’s is Tan^-1(30/11)
nasty-shy [4]

Answer:

69.8637

(4d.p)

4 0
3 years ago
Y+16 &gt; 19 or y+9 &lt; 4
kotykmax [81]

Answer:

y<-5 or y>3

Step-by-step explanation:

y+16>19 : y>3

y+9<4 :y <-5

y>3 or y<-5

y<-5 or y>3

6 0
4 years ago
What is 4 to the third power times 4 to the fourth power
alisha [4.7K]

When you are multiplying exponents with the same base, add the degrees.

4^{3}*4^{4} = 4^{3+4} =4^{7}

6 0
4 years ago
Read 2 more answers
Other questions:
  • Which best describes the transformation that occurs from the graph of f(x)=x^2 to g(x)=(x-2)^2+3?
    5·1 answer
  • Convert 10.5 feet/sec to yards/ mins
    15·2 answers
  • Help please!! Dying at school right now.
    7·2 answers
  • What is r-16.7=-4.8 equals
    10·1 answer
  • Which phrase best describes the points on this graph?
    13·1 answer
  • What is 1/4÷2/5 fractions Answer
    6·2 answers
  • Solve the following proportion; -5/3=2-3a/7
    6·1 answer
  • Write an equation that represents the line
    9·2 answers
  • I need help wit math ratios
    5·2 answers
  • A submersible is a type of underwater vessel. Suppose a submersible starts at a depth of 40 feet below sea level, represented by
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!