4-1 would <span>have the difference of 1 + 4</span>
Answer:
Use the distance formula to determine the distance between the two points.
Distance
=
√(x2−x1)^2 + (y2−y1)^2
Substitute the actual values of the points into the distance formula.
√ ( (−6) − 0)^2 +( (−3) − 4)^2
Subtract 0 from −6
√(−6)^2 + ( ( −3 ) −4 )^2
Raise −6 to the power of 2
√36 + ( ( −3 ) −4 )^2
Subtract 4 from −3
√36 + ( −7 )^2
Raise −7 to the power of 2
√ 36 + 49
Add 36 and 49
√85
<span>(5x^7 y^2)(-4x^4 y^5) =-20x^a y^b
</span><span>
solve this:
(5x^7 y^2)(-4x^4 y^5)
= -20 x^(7 + 4) y^(2 + 5)
= -20 x^11 y^7
answer
</span>A) a=11, b=7
8/2 is 4 and -10 + -2 is -12 because your adding two negatives
<span>points (6,10)
</span>y = -x
x + y = 0
distance = lax1 + by1 + cl/√(a^2 + b^2)
= l1(6) + 1(10) + 0l/√(1^2 + 1^2)
= l6 + 10 + 0l/√(1 + 1)
= l16l/√2
= 16/√2
= 8 .2/√2
= 8 . √2.√2/√2
= 8√2