Answer:
Step-by-step explanation:
4. h(x) = 2x^2 + 14x - 60
Step-by-step explanation:
Given that h(x) is a quadratic.
Also, h(3) = h(-10) = 0
(A) h(x) = x^2 - 13x - 30
=> h(3) = 3^2 - 13(3) - 30
=> h(3) = 9 - 39 - 30
=> h(3) = -30 - 30
=> h(3) = -60
=> h(3) ≠ 0
(B) h(x) = x^2 - 7x - 30
=> h(3) = 3^2 - 7(3) - 30
=> h(3) = 9 - 21 - 30
=> h(3) = -12 - 30
=> h(3) = -42
=> h(3) ≠ 0
(C) h(x) = 2x^2 + 26x - 60
=> h(3) = 2(3^2) + 26(3) - 60
=> h(3) = 2(9) + 78 - 60
=> h(3) = 18 + 78 - 60
=> h(3) = 96 - 60
=> h(3) = 36
=> h(3) ≠ 0
(D) h(x) = 2x^2 + 14x - 60
=> h(3) = 2(3^2) + 14(3) - 60
=> h(3) = 2(9) + 42 - 60
=> h(3) = 18 + 42 - 60
=> h(3) = 60 - 60
=> h(3) = 0
And
=> h(-10) = 2(-10)^2 + 14(-10) - 60
=> h(-10) = 2(100) - 140 - 60
=> h(-10) = 200 - 200
=> h(-10) = 0
Clearly we have,
=> h(3) = h(-10) = 0
Hence, the correct option is (D) h(x) = 2x^2 + 14x - 60