Answer:
They would produce a repulsive force to another
Explanation:
A positive particle approaching another positive particle will repulse it.
According to coulomb's law "like charges repel one another and unlike charges attract".
A charge is an intrinsic property of any matter.
When like charges e.g positive and positive or negative and negative charges are in the vicinity of one another, they repel each other.
When unlike charges; positive and negative are brought together, they simply attract one another.
Therefore, we expect that a positive particle approaching another positive particle will repel one another.
Answer:
Kc = 50.5
Explanation:
We determine the reaction:
H₂ + I₂ ⇄ 2HI
Initially we have 0.001 molesof H₂
and 0.002 moles of I₂
If we have produced 0.00187 moles of HI in the equilibrium we have to know, how many moles of I₂ and H₂, have reacted.
H₂ + I₂ ⇄ 2HI
In: 0.001 0.002 -
R: x x 2x
Eq: 0.001-x 0.002-x 0.00187
x = 0.00187/2 = 9.35×10⁻⁴ moles that have reacted
So in the equilibrium we have:
0.001 - 9.35×10⁻⁴ = 6.5×10⁻⁵ moles of H₂
0.002 - 9.35×10⁻⁴ = 1.065×10⁻³ moles of I₂
Expression for Kc is = (HI)² / (H₂) . (I₂)
0.00187 ² / 6.5×10⁻⁵ . 1.065×10⁻³ = 50.5
Explanation:
Certain materials, called conductors, allow electric charge to move pretty freely through them. ... Other materials, like plastic and rubber, are called insulators because they don't allow electric charges to move through them.
Answer: 1.09 g
Explanation:
If we use the approximation that 1 mole is 22.4 L, then setting up a proportion,
- 1/22.4 = x/0.345 (x is the number of moles in the sample)
- x = 0.0154 mol
Since the mass of a mole of chlroine is about 70.9 g/mol, (0.0154)(70.9) = 1.09 g (to 3 s.f.)