Answer:
see explanation
Step-by-step explanation:
the equation of parabola in vertex form is
y = a(x - h)² + k
where (h, k ) are the coordinates of the vertex and a is a multiplier.
here (h, k ) = (3, 1 ) , then
y = a(x - 3)² + 1
to find a substitute any other point on the graph into the equation.
using (0, 7 )
7 = a(0 - 3)² + 1 ( subtract 1 from both sides )
6 = a(- 3)² = 9a ( divide both sides by 9 )
=
= a
y =
(x - 3)² + 1 ← in vertex form
------------------------------------------------------
the equation of a parabola in factored form is
y = a(x - a)(x - b)
where a, b are the zeros and a is a multiplier
here zeros are - 1 and 3 , the factors are
(x - (- 1) ) and (x - 3), that is (x + 1) and (x - 3)
y = a(x + 1)(x - 3)
to find a substitute any other point that lies on the graph into the equation.
using (0, - 3 )
- 3 = a(0 + 1)(0 - 3) = a(1)(- 3) = - 3a ( divide both sides by - 3 )
1 = a
y = (x + 1)(x - 3) ← in factored form
3:5 =3/5
3/5=4.16/x
using cross multiplication,
5(4.15)=3(x)
20.8=3x
x=108/15
thus, 4.16÷104/15 =3/5
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em><em>:</em><em>)</em>
Answer:
See attachment for graph
Step-by-step explanation:
Given

Required
Draw the graph
First, we identify at least 2 possible values of x and y
Let 
Solve for y




So, a point is: 
Let 
Solve for y





So, another point is: 
<em>Plot </em>
<em> and </em>
<em> on the graph, then draw a straight line through both points</em>
See attachment for graph