Answer:
60 words per minute
Step-by-step explanation:
"per" means "divided by" in this context. When you want "words per minute", it means you want the number of words divided by the corresponding number of minutes:
... (900 words)/(15 minutes) = 60 words/minute
#1) A
#2) E
#3) C
#4) 0.5840
#5) 0.6945
#6) 0.4911
#7) D
#8) G
#9) 0.4375
#10) 0.5203
The formula we use for this is

,
where

is the speed of sound, f is the frequency (or pitch) of the note, and λ is the wavelength.
#1) 0.77955f = 343
Divide both sides by 0.77955:
0.77955f/0.77955 = 343/0.77955
f = 439.997 ≈ 440. This is the pitch for A.
#2) 0.52028f = 343
Divide both sides by 0.52028, and we get f = 659.260. This is the pitch for E.
#3) 0.65552f = 343
Divide both sides by 0.65552, and we get f = 523.25. This is the pitch for C.
#4) 587.33λ = 343
Divide both sides by 587.33 and we get λ = 0.583999 ≈ 0.5840.
#5) 493.88λ = 343
Divide both sides by 493.88, and we get λ = 0.6945.
#6) 698.46λ = 343
Divide both sides by 698.46 and we get λ = 0.49108 ≈ 0.4911.
#7) 0.5840f = 343
Divide both sides by 0.5840 and we get f = 587.3288 ≈ 587.33. This is the pitch for D.
#8) 0.4375f = 343
Divide both sides by 0.4375 and we get f = 784. This is the pitch for G.
#9) 783.99λ = 343
Divide both sides by 783.99 and we get λ = 0.4375.
#10) 659.26λ = 343
Divide both sides by 659.26 and we get λ = 0.52028 ≈ 0.5203.
Answer: ΔKE = 760.5 Joules
Step-by-step explanation:
Isnt the formula for ΔKE = 0.5m*v^2???
Im not going to use that formula you gave me, its wrong.
900/2 = 450
1.3^2 = 1.69
450 x 1.69 = 760.5 Jules
This is also the wrong subject btw
The volume, surface area and the ratios of the SA to volume will be as follows:
Volume=πr²h
Area=2πr²+πdh
Ratio of SA to volume=Area/volume
π=3.14
Thus using the above formula:
1.
a]
Radius: 3 inches
Height: 2 inches
Volume=πr²h
volume=π×3²×2=56.52 in³
b]
Area=2πr²+πdh
2×π×3²+π×2×3×2
=56.55+37.68
=94.23 in²
c]
Ratio=area/volume
=94.23/56.52
=1.6672
1.
Radius: 2 inches
Height: 9 inches
a]
V=πr²h
V=3.14*2^2*9
V=113.04 in³
b]
Area=2πr²+πdh
=2*3.14*2^2+3.14*2*2*9
=25.12+113.04
=138.16 in²
c]
Ratio=area/volume
=138.16/113.04
=11/9
3.
Diameter=4 inches
Height= 9 inches
a]
V=πr²h
V=3.14×2²×9
V=113.04
b]
Area=2πr²+πdh
=2*3.14*2^2+3.14*4*9
=25.12+113.04
=138.16 in²
c]
Ratio=area/volume
=138.16/113.04
=11/9
4]
Diameter: 6 inches
Height: 4 inches
a]
Volume=πr²h
=3.14×3²×4
=113.04 in³
b]
Area=2πr²+πdh
=2×3.14×3²+3.14×6×4
=56.52+75.36
=131.88 in²
c] Ratio
131.88/113.04
=7/6
1. For the surface area to volume to be small it means that the area is smaller than the volume, for surface area to volume be larger it means that the surface area is larger than the volume. It is more economical for the surface area to volume to be small because it will mean that small amount of materials make cans with large volume. This means cost of production is cheaper.
2. To evaluate this process let's use one of the dimensions:
Radius: 3 inches
Height: 2 inches:
i. add radius and height:
3+2=5 inches
ii. Multiply radius and height:
3×2=6
iii. Dividing the result from step 1 by the result in step 2:
5/6
iv. Multiply the result from step 3 by 2:
5/6×6
=5
This result does not seem to add up to the result in our earlier ratio. Thus we conclude that Khianna was wrong. This method can't work with 3-D figures.
The answer to the first part of your question is 9
as for the second part 36/4 (which is 9 btw) then subtract 2 I answered this one the best I could (let me know if I'm wrong)
(i just don't have to much time on my hands because I have homework myself)