170 is the answer to the question
By elimination:
y = 3x - 1
y = 2x + 2
Subtract the second equation from the first
0 = x - 1
y = 2x + 2
Subtract the first equation from the second
0 = x - 1
y = x + 3
Subtract the first equation from the second again
0 = x - 1
y = 4
Subtract x from both sides of the first equation
- x = - 1
y = 4
Divide the first equation by (-1)
x = 1
y = 4
<h3>
So, the solution is x = 1 and y = 4 {or: (1, 4)}</h3>
Answer:
c = 420t . . . . c is calories burned; t is hours riding at 15 mph
Step-by-step explanation:
There is not enough information given to write a function rule relating all the variables to calories burned. If we assume that calories are burned at the constant rate of 420 calories per hour, then total calories will be that rate multiplied by hours:
c = 420·t
where c is total calories burned by the 154-lb person, and t is hours riding at 15 mph.
___
In general, rates are related to quantities by ...
quantity = rate · time . . . . . where the rate is (quantity)/(time period)
Answer:
wheres the picture?
Step-by-step explanation:
It can have however many x intercepts it wants,
<span>BUT, to be a function it must pass the vertical line test. </span>
<span>this means you have to look at the graph and see if a vertical line drawn anywhere hits the graph more than once. </span>
<span>if it hits it more than once, it is NOT a function.
</span>
An example is a polynomial function to the infinite degree. That is
f(x) = lim (n --> infinity) [ x^n]
but only 1 y intercept (vertical line test remember)