Https://photomath.net/s/rRVj6K
Answer:
nuber 1
Simplifying
3x + 2y = 35
Solving
3x + 2y = 35
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '-2y' to each side of the equation.
3x + 2y + -2y = 35 + -2y
Combine like terms: 2y + -2y = 0
3x + 0 = 35 + -2y
3x = 35 + -2y
Divide each side by '3'.
x = 11.66666667 + -0.6666666667y
Simplifying
x = 11.66666667 + -0.6666666667y
A company is selling books. It has to pay $500 to start printing the books, and once they have done that, the books sell at $14.99 each. How many books must they sell to make a profit?
First we would model an equation. X will be the amount of books sold, and Y will be profits (in dollars obv). They had to pay $500 before they could start selling, so we must account for that too.
This equation would be

because for every book sold, X increases by 1, increasing Y by 14.99
The answer would be 34 books sold in order to turn a profit. (500/14.99=
The answer to your problem is 50b+8
To prove two equations have infinite solutions, you have to prove that those two equations are the same equations, but in a different form.
For example: Prove the equations are infinite
5y=2x+7
10y=4x+14
If you multiply the first equation by 2, and substitiute any of the numbers, you will get 0=0