1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djverab [1.8K]
2 years ago
11

Which decimals written in expanded form are greater than 5.3? Check all that apply. 5 + 0.3 + 0.00 5 + 0.3 + 0.001 (5 × 1) + (2

× 0.1) + (9 × 0.01) (5 × 1) + (3 × 0.1) + (3 × 0.01) (6 × 1) + (2 × 0.1) + (1 × 0.01)
Mathematics
1 answer:
Ksenya-84 [330]2 years ago
3 0

Answer:

Any number in form of x.y = x (1) + 1/10 (y)

where x = 5 & y > 3 , or x > 5

Step-by-step explanation:

Expanded form of 5.3 = 5 (1) + 3 (1/10)

Some decimals written in expanded form that are greater than 5.3    :

5 (1) + 4 (1/10) = 5.4

6 (1) + 2 (1/10) = 6.2  

You might be interested in
Neil goes to the pet shop and selects a treat for his dog. He chooses one, returns it to the bunch, and the chooses another. Wha
ivolga24 [154]

Answer:

%50

Step-by-step explanation:

5 0
3 years ago
What is the answer and what should I write for my explanation? Can you please show me all the work?
Stells [14]

Answer:

sorry i didn't get it

Step-by-step explanation:

7 0
3 years ago
State the exact value of tan(pi/2)
Vlad [161]
J is between H and K.if HJ =4t -15 ,JK=5t-6, and KH=15,find JK.

6 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
2 years ago
Find the value of x so that the shaded region is a gnomon to the white rectangle.
RUDIKE [14]

Based on the shaded region, the value of x which makes this region a gnomon is x = 1.

<h3>What is value of x?</h3>

Based on the dimensions of the side that isn't shaded, and the dimensions of the side that is shaded, the value of x can be found as:

3/ 6 = (1 + 3) / (x + 6 + x)

1/2 =  4 / (6 + 2x)

6 + 2x = 4 / (1/2)

2x = 8 - 6

x = 2/2

x = 1

Find out more on shaded regions at brainly.com/question/9767762.

#SPJ4

4 0
1 year ago
Other questions:
  • Determine the slope of the line that passes through the points (-4, 6) and (0, 4).
    10·2 answers
  • Solve the following system of equations: <br> x − 2y = 5<br> 2x − 4y = 10
    12·1 answer
  • Does anything multiply to -177 and add to 0?
    10·1 answer
  • Jackson School's spelling bee started at
    11·1 answer
  • An audio books club charges an initial joining fee of $15.00. The cost per audio book is $12.00. The graph shows the cost of bel
    5·1 answer
  • Math i dont understand :c ___% of 6 = 3
    11·1 answer
  • 11. Which is a solution of<br> b +7 &gt;-2<br> A. b &lt;-9<br> B. b&gt; -9 C. b&gt;-9
    6·1 answer
  • A regular pentagon is inscribed in ur let of radius 8cm. find the length of one side of the polygon​
    8·1 answer
  • Help pleaseeeee help ;))
    14·1 answer
  • ASAP please! The Venn diagram below represents all students taking classes at a local college. The Math circle
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!