Answer:
7
Step-by-step explanation:
HOPE THIS HELPS
PLZ MARK BRAINLIEST
Answer:
The z-score for the 34-week gestation period baby is 0.61
Step-by-step explanation:
The formula for calculating a z-score is is z = (x-μ)/σ,
where x is the raw score,
μ is the population mean
σ is the population standard deviation.
We are told in the question that:
Babies born after a gestation period of 32-35 weeks have a mean weight of 2600 grams and a standard deviation of 660 grams. Also, we are supposing a 34-week gestation period baby weighs 3000grams
The z-score for the 34-week gestation period baby is calculated as:
z = (x-μ)/σ
x = 3000, μ = 2600 σ = 660
z = 3000 - 2600/660
= 400/660
=0.6060606061
Approximately, ≈ 0.61
Answer:
Step-by-step explanation:
The inequality will be split into two
It is know that, if a<b<c
Then a<b and b<c
-8<2x-4<4
Apply that to this
Then,
-8<2x-4. Equation 1
Also,
2x-4<4 equation 2
Solving equation 1
-8<2x-4
Add 4 to both side of the equation
-8+4<2x-4+4
-4<2x
Divide both sides by 2
-4/2<2x/2
-2<x
Note, if a is less than b, then, b is greater than a, e.g. 4 is less than 10, this implies 10 is greater than 4
Therefore,
-2<x
Then, x greater than -2
Equation 2
2x-4<4
Add 4 to both side of the inequalities
2x-4+4<4+4
2x<8
Divide both side by 2
Then,
2x/2<8/2
x<4
Therefore x is between -2 and +4.
Check attachment for graphical solution
Answer:
1.8%
Step-by-step explanation:
(8c5 * 7c0)/15c5
= 0.018
This is the answer which I get when I solve this... cross check the calculations once.