Answer:
6.50
Step-by-step explanation:
- 10.00

The answer is D, dilation by a scale factor of 2 followed by reflection about the y- axis.
Answer:
Solutions are (1,2) and (-1/2,5)
Don't forget to like rate and mark brainliest!
Step-by-step explanation:
y=6x^2-5x+1
y=-2x+4
<em>Substitute</em>
-2x+4=6x^2-5x+1
<em>Simplify</em>
0=6x^2-3x-3
<em>Solve by factoring</em>
(x-6/6)(x+3/6)=0
x-1=0, x+1/2=0
x=1, x=-1/2
<em>Plug x's into oringinal equation</em>
y=-2(1)+4, y=-2(-1/2)+4
y=-2+4, y=1+4
y=2, y=5
<em>Write out solutions</em>
(1,2) and (-1/2,5)
We know that:

There is also an interesting property that relates the sine and the cosine of an angle:

We can find the cosine of theta using this equation:
![\begin{gathered} \cos ^2(\theta_1)=1-\sin ^2(\theta_1) \\ \cos (\theta_1)=\sqrt{1-\sin^2(\theta_1)} \\ \cos (\theta_1)=\sqrt[]{1-(-\frac{12}{13})^2} \\ \lvert\cos (\theta_1)\rvert=\sqrt[]{1-\frac{144}{169}}=\sqrt[]{\frac{25}{169}} \\ \lvert\cos (\theta_1)\rvert=\frac{5}{13} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ccos%20%5E2%28%5Ctheta_1%29%3D1-%5Csin%20%5E2%28%5Ctheta_1%29%20%5C%5C%20%5Ccos%20%28%5Ctheta_1%29%3D%5Csqrt%7B1-%5Csin%5E2%28%5Ctheta_1%29%7D%20%5C%5C%20%5Ccos%20%28%5Ctheta_1%29%3D%5Csqrt%5B%5D%7B1-%28-%5Cfrac%7B12%7D%7B13%7D%29%5E2%7D%20%5C%5C%20%5Clvert%5Ccos%20%28%5Ctheta_1%29%5Crvert%3D%5Csqrt%5B%5D%7B1-%5Cfrac%7B144%7D%7B169%7D%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B25%7D%7B169%7D%7D%20%5C%5C%20%5Clvert%5Ccos%20%28%5Ctheta_1%29%5Crvert%3D%5Cfrac%7B5%7D%7B13%7D%20%5Cend%7Bgathered%7D)
Since theta is in the third quadrant then its cosine must be a negative number so:
Answer: A -11
Step-by-step explanation:
its quite simple
subract 9(-) from negative 2