Answer:
2apples
Step-by-step explanation:
The answer would be the first choice. 
Explanation: The reason for this is that the question was pretty much just asking what the area of the resulting two-dimensional cross section would be -the shape in gray- (which can be found by using the formula
. To add on, since the dimensions of the shape are already given (5 and 3) all you've to do is multiply: 3*5=15
That's how you get to the answer.
Answer:
Step-by-step explanation:
First, note this parameters from the question.
We let x = number of $5 increases and number of 10 decreases in plates sold.
Our Revenue equation is:
R(x) = (300-10x)(10+5x)
We expand the above equation into a quadratic equation by multiplying each bracket:
R(x) = 3000 + 1500x - 3000x - 1500x^2
R(x) = -1500x^2 - 1500x + 3000 (collect like terms)
Next we simplify, by dividing through by -1500
= 1500x^2/1500 - 1500x/1500 + 3000/1500
= X^2 - x + 2
X^2 - x + 2 = 0
Next, we find the axis of symmetry using the formula x = -b/(2*a) where b = 1, a = 1
X = - (-1)/2*1
X = 1/2
Number of $5 increases = $5x1/2 = $2.5
=$2.5 + $20 = $22.5 ticket price gives max revenue.
We'll use standard labeling of right triangle ABC, C=90 degrees, legs a, b, hypotenuse c.
11.
Right triangle, cliff peak A, boat B, angle opposite cliff is B=28.9 deg. adjacent leg a=65.7 m, cliff height is leg b.
tan B = b/a
b = a tan B = 65.7 tan 28.9° = 36.3 m
12.
Similar story, boat at B, opposite b=3.5 m, rope c=12 m
sin B = b/c
B = arcsin b/c = arcsin (3.5/12) = 17.0°
13.
c=124 m, A=58°
sin A = a/c
a = c sin A = 124 sin 58 = 105.2 m
14.
That's a hypotenuse c=4-1.2 = 2.8 m to a height b=1.8m so
cos A = b/c
A = arccos b/c = arccos (1.8/2.8) = 50.0°
15.
Not a right triangle, an isosceles triangle. Half of it is a right triangle with hypotenuse one arm, c=9.8 cm and angle opposite half the base of B=62/2=31°. We're after d=2b:
sin B = b/c
b = c sin B
d = 2b = 2 c sin B = 2(9.8) sin 31 = 10.1 cm
Almost equilateral
Answer:
Step-by-step explanation:
hi: the second, the third and the last one are true