The average rate of change (AROC) of a function f(x) on an interval [a, b] is equal to the slope of the secant line to the graph of f(x) that passes through (a, f(a)) and (b, f(b)), a.k.a. the difference quotient given by
![f_{\mathrm{AROC}[a,b]} = \dfrac{f(b)-f(a)}{b-a}](https://tex.z-dn.net/?f=f_%7B%5Cmathrm%7BAROC%7D%5Ba%2Cb%5D%7D%20%3D%20%5Cdfrac%7Bf%28b%29-f%28a%29%7D%7Bb-a%7D)
So for f(x) = x² on [1, 5], the AROC of f is
![f_{\mathrm{AROC}[1,5]} = \dfrac{5^2-1^2}{5-1} = \dfrac{24}4 = \boxed{6}](https://tex.z-dn.net/?f=f_%7B%5Cmathrm%7BAROC%7D%5B1%2C5%5D%7D%20%3D%20%5Cdfrac%7B5%5E2-1%5E2%7D%7B5-1%7D%20%3D%20%5Cdfrac%7B24%7D4%20%3D%20%5Cboxed%7B6%7D)
An applicable equation of a vertical parabola in vertex form is:
y-k = a(x-h)^2
Let x=2, y=4, h=-1 and k=-1, where (h,k) is the vertex. Then,
4-(-1) = a(2-[-1])^2, which becomes 5 = a(9). Therefore, a = 5/9, and the
equation of the parabola is
y+1 = (5/9)(x+1)
Answer:
A 9y= 71+117 is the equation
41 feet is the correct answer !!!!!!