Anything that is multiplied by a number over 1 will get bigger. any other number such as negatives or fractions/decimals will get smaller. 1.25 and 3 are expansions and -2,3/4, and 1/5 are contractions
Your answer would be
8y^7
-------
3X^3
Answer:
We have been given a unit circle which is cut at k different points to produce k different arcs. Now we can see firstly that the sum of lengths of all k arks is equal to the circumference:

Now consider the largest arc to have length \small l . And we represent all the other arcs to be some constant times this length.
we get :

where C(i) is a constant coefficient obviously between 0 and 1.

All that I want to say by using this step is that after we choose the largest length (or any length for that matter) the other fractions appear according to the above summation constraint. [This step may even be avoided depending on how much precaution you wanna take when deriving a relation.]
So since there is no bias, and \small l may come out to be any value from [0 , 2π] with equal probability, the expected value is then defined as just the average value of all the samples.
We already know the sum so it is easy to compute the average :

Answer: x=5
Step-by-step explanation:
Answer:
Step-by-step explanation:
If 3/4 of the lot was full and the lot holds 1000 vehicles, then there are 3/4(1000) in the lot. 3/4(1000) = 750. That means there are 750 vehicles in the lot. If 200 cars are in the lot, then 750 - 200 = 550 trucks.