Hi there!


We can evaluate using the power rule and trig rules:



Therefore:
![\int\limits^{12}_{2} {x-sin(x)} \, dx = [\frac{1}{2}x^{2}+cos(x)]_{2}^{12}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B12%7D_%7B2%7D%20%7Bx-sin%28x%29%7D%20%5C%2C%20dx%20%3D%20%5B%5Cfrac%7B1%7D%7B2%7Dx%5E%7B2%7D%2Bcos%28x%29%5D_%7B2%7D%5E%7B12%7D)
Evaluate:

Answer:
Your selection is appropriate
Step-by-step explanation:
A negative exponent in the numerator is equivalent to a positive exponent in the denominator, and vice versa.
... a⁻² = 1/a²
____
2⁴ multiplies the variable expression no matter which way it is written.
Answer:
1
i belive
Step-by-step explanation:
Answer:
One unique triangle
Step-by-step explanation: