Answer:
0.275
Step-by-step explanation:
Answer:
A. 0.22
B. 0.18
C. 0.25
D. 0.244
Step-by-step explanation:
S = {51 to 100} = 50
The sample space S contains values from 51 to 100 which is a total of 50 different values.
A.
Probability of A (lies between the values of 90 to 100 = 11).
11/50 = 0.22
B.
For a student to fail the course, his course has to be less than 60 = from 51 to 59. A total of 9 values.
9/50 = 0.18
C.
For student to get c, (70 to 79) a total of 10 values: 10/50 = 0.20
P(student did not get C) = 1-0.20 = 0.80
To get B, ( 80 to 89)
10/50 = 0.20
Probability that a student who is known not to have a c grade has a b grade = 0.20/0.80 = 0.25
D.
Probability of passing lies between 60 to 100 = 41 scores
41/50 = 0.82
Probability of student who passed having a B = 0.20/0.82 = 0.244
<u>Answer:</u>
A curve is given by y=(x-a)√(x-b) for x≥b. The gradient of the curve at A is 1.
<u>Solution:</u>
We need to show that the gradient of the curve at A is 1
Here given that ,
--- equation 1
Also, according to question at point A (b+1,0)
So curve at point A will, put the value of x and y

0=b+1-c --- equation 2
According to multiple rule of Differentiation,

so, we get



By putting value of point A and putting value of eq 2 we get


Hence proved that the gradient of the curve at A is 1.
Nicoles pattern:
1
5
17
53
161
Ian’s pattern:
0
1
3
7
15
Ordered pair:
(1, 0)
(5, 1)
(17, 3)
(53, 7)
(161, 15)
Table 1 -
Sequence 1:
9
11
13
15
17
Sequence 2:
5
8
11
14
17
Ordered pair:
(9, 5)
(11, 8)
(13, 11)
(15, 14)
(17, 17)
Table 2 -
Sequence 1:
20
16
12
8
4
Sequence 2:
20
17
14
11
8
Ordered pair:
(20, 20)
(16, 17)
(12, 14)
(8, 11)
(4, 8)
Table 3 -
Sequence 1:
1
3
7
15
31
Sequence 2:
40
24
16
12
10
Ordered pair:
(1, 40)
(3, 24)
(7, 16)
(15, 12)
(31, 10)
You will need three roots for this, so we have
Let x = -30, -10 and +20
So the factors will be (x+30)(x+10)(x-20)
The divide it to 100, this will help bring the peak up and down
So the polynomial function R(x) will become
1/100 * (x+30)(x+10)(x-20)
R(x) = 1/100 * (x+30)(x+10)(x-20)
Finding the X-intercept:
Let R(x) = 0 and solve for x.
1/100 * (x+30)(x+10)(x-20) = 0
x = -30, -10, 20 are the x-intercepts.