Answer:
The answer is (d) ⇒ cscx = √3
Step-by-step explanation:
∵ sinx + (cotx)(cosx) = √3
∵ sinx + (cosx/sinx)(cosx) = √3
∴ sinx + cos²x/sinx = √3
∵ cos²x = 1 - sin²x
∴ sinx + (1 - sin²x)/sinx = √3 ⇒ make L.C.M
∴ (sin²x + 1 - sin²x)/sinx = √3
∴ 1/sinx = √3
∵ 1/sinx = cscx
∴ cscx = √3
Answer:
4x + x + 7) - 2x+8 - 4 by substituting x= 1 and x = 2. А. 6x + 11 B. 3(x+7) C. 2(3x + 16) D. 3x + 16
Step-by-step explanation:
Answer:
Option B. Cosec θ = –5/3
Option C. Cot θ = 4/3
Option D. Cos θ = –4/5
Step-by-step explanation:
From the question given above, the following data were obtained:
Tan θ = 3/4
θ is in 3rd quadrant
Recall
Tan θ = Opposite / Adjacent
Tan θ = 3/4 = Opposite / Adjacent
Thus,
Opposite = 3
Adjacent = 4
Next, we shall determine the Hypothenus. This can be obtained as follow:
Opposite = 3
Adjacent = 4
Hypothenus =?
Hypo² = Opp² + Adj²
Hypo² = 3² + 4²
Hypo² = 9 + 16
Hypo² = 25
Take the square root of both side
Hypo = √25
Hypothenus = 5
Recall:
In the 3rd quadant, only Tan is positive.
Therefore,
Hypothenus = –5
Finally, we shall determine Sine θ, Cos θ, Cot θ and Cosec θ to determine which option is correct. This can be obtained as follow:
Opposite = 3
Adjacent = 4
Hypothenus = –5
Sine θ = Opposite / Hypothenus
Sine θ = 3/–5
Sine θ = –3/5
Cos θ = Adjacent / Hypothenus
Cos θ = 4/–5
Cos θ = –4/5
Cot θ = 1/ Tan θ
Tan θ = 3/4
Cot θ = 1 ÷ 3/4
Invert
Cot θ = 1 × 4/3
Cot θ = 4/3
Cosec θ = 1/ Sine θ
Sine θ = –3/5
Cosec θ = 1 ÷ –3/5
Invert
Cosec θ = 1 × –5/3
Cosec θ = –5/3
SUMMARY
Sine θ = –3/5
Cos θ = –4/5
Tan θ = 3/4
Cot θ = 4/3
Cosec θ = –5/3
Therefore, option B, C and D gives the correct answer to the question.
Answer:
135 units²
Step-by-step explanation:
height = √17²-8²=√289-64=√225=15
area = 9×15 = 135 units²
Answer:
the pic is 't clear
Step-by-step explanation: