Answer:
A: 
B:![\frac{1}{4\sqrt[4]{x^{3} } }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%5Csqrt%5B4%5D%7Bx%5E%7B3%7D%20%7D%20%7D)
c: 2x
Step-by-step explanation:
To find the derivative of x raised to the nth power we use the following template
Something else to keep in mind is that
![\sqrt[n]{x^{y}}=x^{y/n}](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7Bx%5E%7By%7D%7D%3Dx%5E%7By%2Fn%7D)
So knowing this we can rewrite a as follows

so we can use the template above and get

So that simplifies to



B: Same kind of deal here
![\sqrt[4]{x}=x^{\frac{1}{4} }](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%7D%3Dx%5E%7B%5Cfrac%7B1%7D%7B4%7D%20%7D)

![\frac{x^{-\frac{3}{4}}}{4} =\frac{1}{4\sqrt[4]{x^{3} } }](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B-%5Cfrac%7B3%7D%7B4%7D%7D%7D%7B4%7D%20%3D%5Cfrac%7B1%7D%7B4%5Csqrt%5B4%5D%7Bx%5E%7B3%7D%20%7D%20%7D)
C: this one is by far the easiest because the derivative of a constant is 0 so we can just apply the same template from before and get
2x