Answer:
The third angle of the triangle is 70°.
Step-by-step explanation:
The two angles of a triangle (say Δ ABC) are given to be 30° and 80°.
We have to find the third angle.
Let us assume that ∠ A = 30° and ∠ B = 80°, then we have to find ∠ C.
Now, we know that, ∠ A + ∠ B + ∠ C = 180° {Property of a triangle}
⇒ 30° + 80° + ∠ C = 180°
⇒ ∠ C = 180° - 30° - 80° = 70°
Therefore, the third angle of the triangle is 70°. (Answer)
Answer:
4500000
Step-by-step explanation: Let me know if this helped
Answer:
9 laps.
Step-by-step explanation:
-Let x be the number of laps Taylor runs.
-Given that the ratio of Kyle to Taylor laps is 2:3, we express the actual laps in meters to solve for x as follows:

Hence, Taylor runs 9 laps.
Answer:
d
Step-by-step explanation:
formula for area of a triangle is base * width * 1/2
We have a sample of 28 data points. The sample mean is 30.0 and the sample standard deviation is 2.40. The confidence level required is 98%. Then, we calculate α by:

The confidence interval for the population mean, given the sample mean μ and the sample standard deviation σ, can be calculated as:
![CI(\mu)=\lbrack x-Z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt[]{n}},x+Z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt[]{n}}\rbrack](https://tex.z-dn.net/?f=CI%28%5Cmu%29%3D%5Clbrack%20x-Z_%7B1-%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Ccdot%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%5B%5D%7Bn%7D%7D%2Cx%2BZ_%7B1-%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Ccdot%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%5B%5D%7Bn%7D%7D%5Crbrack)
Where n is the sample size, and Z is the z-score for 1 - α/2. Using the known values:
![CI(\mu)=\lbrack30.0-Z_{0.99}\cdot\frac{2.40}{\sqrt[]{28}},30.0+Z_{0.99}\cdot\frac{2.40}{\sqrt[]{28}}\rbrack](https://tex.z-dn.net/?f=CI%28%5Cmu%29%3D%5Clbrack30.0-Z_%7B0.99%7D%5Ccdot%5Cfrac%7B2.40%7D%7B%5Csqrt%5B%5D%7B28%7D%7D%2C30.0%2BZ_%7B0.99%7D%5Ccdot%5Cfrac%7B2.40%7D%7B%5Csqrt%5B%5D%7B28%7D%7D%5Crbrack)
Where (from tables):

Finally, the interval at 98% confidence level is: