<span>That's the definition of metabolism. ;)</span>
Answer:
4.9 × 10²³ molecules
Explanation:
Given data:
Number of molecules = ?
Number of moles of oxygen = 0.815 mol
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ molecules
0.815 mol × 6.022 × 10²³ molecules / 1 mol
4.9 × 10²³ molecules
The reaction between the reactants would be:
CH₃NH₂ + HCl ↔ CH₃NH₃⁺ + Cl⁻
Let the conjugate acid undergo hydrolysis. Then, apply the ICE approach.
CH₃NH₃⁺ + H₂O → H₃O⁺ + CH₃NH₂
I 0.11 0 0
C -x +x +x
E 0.11 - x x x
Ka = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
Since the given information is Kb, let's find Ka in terms of Kb.
Ka = Kw/Kb, where Kw = 10⁻¹⁴
So,
Ka = 10⁻¹⁴/5×10⁻⁴ = 2×10⁻¹¹ = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
2×10⁻¹¹ = [x][x]/[0.11-x]
Solving for x,
x = 1.483×10⁻⁶ = [H₃O⁺]
Since pH = -log[H₃O⁺],
pH = -log(1.483×10⁻⁶)
<em>pH = 5.83</em>
C16H32O2(aq) --> 16CO2(g) + 16H2O(l) ... said its wrong though?
<span>This is because you haven't added any oxygen needed for the combustion, so your equation does'nt balance. Also a solution in water [aq] doesn't burn! </span>
<span>Try </span><span>C16H32O2(s) + 23O2(g) --> 16CO2(g) + 16H2O(l)
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>