For this case, what we must do is fill squares in all the expressions until we find the correct result.
We have then:
x2 + y2 − 4x + 12y − 20 = 0 x2 + y2 − 4x + 12y = 20
x2 − 4x + y2 + 12y = 20
x2 − 4x + (12/2)^2 + y2 + 12y + (-4/2)^2 = 20 + (12/2)^2 + (-4/2)^2
x2 − 4x + (6)^2 + y2 + 12y + (-2)^2 = 20 + (6)^2 + (-2)^2
x2 − 4x + 36 + y2 + 12y + 4 = 20 + 36 + 4
(x − 2)2 + (y + 6)2 = 60
3x2 + 3y2 + 12x + 18y − 15 = 0
x2 + y2 + 4x + 6y − 5 = 0
x2 + y2 + 4x + 6y = 5
x2 + 4x + (4/2)^2 + y2 + 6y + (6/2)^2 = 5 + (4/2)^2 + (6/2)^2
x2 + 4x + (2)^2 + y2 + 6y + (3)^2 = 5 + (2)^2 + (3)^2
x2 + 4x + 4 + y2 + 6y + 9 = 5 + 4 + 9
(x + 2)2 + (y + 3)2 = 18
2x2 + 2y2 − 24x − 16y − 8 = 0
x2 + y2 − 12x − 8y − 4 = 0
x2 + y2 − 12x − 8y = 4
x2 − 12x + (-12/2)^2 + y2 − 8y + (-8/2)^2 = 4 + (-12/2)^2 + (-8/2)^2
x2 − 12x + (-6)^2 + y2 − 8y + (-4)^2 = 4 + (-6)^2 + (-4)^2
x2 − 12x + 36 + y2 − 8y + 16 = 4 + 36 + 16
(x − 6)2 + (y − 4)2 = 56
x2 + y2 + 2x − 12y − 9 = 0
x2 + y2 + 2x - 12y = 9
x2 + 2x + y2 - 12y = 9
x2 + 2x + (2/2)^2 + y2 - 12y + (-12/2)^2 = 9 + (2/2)^2 + (-12/2)^2
x2 + 2x + (1)^2 + y2 - 12y + (-6)^2 = 9 + (1)^2 + (-6)^2
x2 + 2x + 1 + y2 - 12y + 36 = 9 + 1 + 36
(x + 1)2 + (y − 6)2 = 46
9514 1404 393
Answer:
d(32) = 28.80
the price Marcus pays on an item with an original price of 32
Step-by-step explanation:
d(32) = 32 -0.1(32)
d(32) = 28.8
The problem statement tells you d(32) is the price Marcus pays when the original price is 32.
Answer:
x = 55
Step-by-step explanation:
Draw a line parallel to the top and bottom parallel lines so this new line goes through the pointed end of x.
Draw another line parallel to the top and bottom lines through the pointy end of 45.
The bottom angle of the line through 45 is 15 degrees (alternate interior angles.
The top angle is 45 - 15 = 30
The bottom angle of the line going to x is 150 degrees. It and the 30 degree angle make 180. 30 + 150 = 180
One final observation The top angle of made by the line going through x is 180 - 25 = 155
What you have now is
155 + 150 + x = 360
305 + x = 360
x = 360 - 305
x = 55