The answer would be 73 remainder 0 if rounded to one decimal place
Given:
Consider the given expression is:

To find:
The simplified form of the given expression.
Solution:
We have,

Taking LCM, we get



Therefore, the required simplified fraction for the given expression is
.
( 2x +5)^2 =4
2x+5=2
2x=-3
X=-3/2
Answer:
The option "StartFraction 1 Over 3 Superscript 8" is correct
That is
is correct answer
Therefore
Step-by-step explanation:
Given expression is ((2 Superscript negative 2 Baseline) (3 Superscript 4 Baseline)) Superscript negative 3 Baseline times ((2 Superscript negative 3 Baseline) (3 squared)) squared
The given expression can be written as
![[(2^{-2})(3^4)]^{-3}\times [(2^{-3})(3^2)]^2](https://tex.z-dn.net/?f=%5B%282%5E%7B-2%7D%29%283%5E4%29%5D%5E%7B-3%7D%5Ctimes%20%5B%282%5E%7B-3%7D%29%283%5E2%29%5D%5E2)
To find the simplified form of the given expression :
![[(2^{-2})(3^4)]^{-3}\times [(2^{-3})(3^2)]^2](https://tex.z-dn.net/?f=%5B%282%5E%7B-2%7D%29%283%5E4%29%5D%5E%7B-3%7D%5Ctimes%20%5B%282%5E%7B-3%7D%29%283%5E2%29%5D%5E2)
( using the property
)
( using the property 
( combining the like powers )
( using the property
)

( using the property
)
Therefore
Therefore option "StartFraction 1 Over 3 Superscript 8" is correct
That is
is correct answer