Given:
The system Mx+Ny=P has a solution (1,3) where Rx+Sy=T; <span>M, N, P, R,S and T are non-zero real numbers.
Solve for M, N, R, P, S, T:
M +3N = P
R + 3S = T
The given choices should simplify to the equations above.
A) Mx +Ny = P
7Rx + 7Sy = 7T
7(Rx + Sy) = 7T
Rx + Sy = T
remarks: CORRECT
B) (M+R)x + (N+S)y = P + T
Rx + Sy = T
Mx + Rx + Ny + Sy = P + T
Mx + Ny + T = P + T
Mx + Ny = P
remarks: CORRECT
C) Mx + Ny = P
(2M - R)x + (2N - S)y = P - 2T
2Mx - Rx + 2Ny - Sy = P - 2T
2(Mx + Ny) - (Rx + Sy) = P - 2T
2P - (Rx + Sy) = P - 2T
remarks: INCORRECT
</span>
7 % of cost price is 2.80 , What about 1%?
7 = 2.80
1 = x (where x is the price value of 1% in dollars)
We simplify the above equation, so:
7 × x = 2.8 × 1 → 7x = 2.8 → x = 2.8 / 7 → x = 0.4 dollars
We know that 100% represents the whole price,
so if 1% is 0.4 dollars, then 100% will be 0.4 × 100 = 40 dollars
Therefore the store charged $40 dollars for the helmet before tax
Hello,
Please, see the attached file.
Thanks.
The area of the part of the plane 3x 2y z = 6 that lies in the first octant is mathematically given as
A=3 √(4) units ^2
<h3>What is the area of the part of the plane 3x 2y z = 6 that lies in the first octant.?</h3>
Generally, the equation for is mathematically given as
The Figure is the x-y plane triangle formed by the shading. The formula for the surface area of a z=f(x, y) surface is as follows:

The partial derivatives of a function are f x and f y.

When these numbers are plugged into equation (1) and the integrals are given bounds, we get:
![&=\int_{0}^{2} \int_{0}^{3-\frac{3}{2} x} \sqrt{(-3)^{2}+(-2)^2+1dxdy} \\\\&=\int_{0}^{2} \int_{0}^{3-\frac{3}{2} x} \sqrt{14} d x d y \\\\&=\sqrt{14} \int_{0}^{2}[y]_{0}^{3-\frac{3}{2} x} d x d y \\\\&=\sqrt{14} \int_{0}^{2}\left[3-\frac{3}{2} x\right] d x \\\\](https://tex.z-dn.net/?f=%26%3D%5Cint_%7B0%7D%5E%7B2%7D%20%5Cint_%7B0%7D%5E%7B3-%5Cfrac%7B3%7D%7B2%7D%20x%7D%20%5Csqrt%7B%28-3%29%5E%7B2%7D%2B%28-2%29%5E2%2B1dxdy%7D%20%5C%5C%5C%5C%26%3D%5Cint_%7B0%7D%5E%7B2%7D%20%5Cint_%7B0%7D%5E%7B3-%5Cfrac%7B3%7D%7B2%7D%20x%7D%20%5Csqrt%7B14%7D%20d%20x%20d%20y%20%5C%5C%5C%5C%26%3D%5Csqrt%7B14%7D%20%5Cint_%7B0%7D%5E%7B2%7D%5By%5D_%7B0%7D%5E%7B3-%5Cfrac%7B3%7D%7B2%7D%20x%7D%20d%20x%20d%20y%20%5C%5C%5C%5C%26%3D%5Csqrt%7B14%7D%20%5Cint_%7B0%7D%5E%7B2%7D%5Cleft%5B3-%5Cfrac%7B3%7D%7B2%7D%20x%5Cright%5D%20d%20x%20%5C%5C%5C%5C)
![&=\sqrt{14}\left[3 x-\frac{3}{2} \cdot \frac{1}{2} \cdot x^{2}\right]_{0}^{2} \\\\&=\sqrt{14}\left[3-\frac{3}{2} \cdot \frac{1}{2} \cdot x^{2}\right]_{0}^{2} \\\\&=\sqrt{14}\left[3.2-\frac{3}{2} \cdot \frac{1}{2} \cdot 3^{2}\right] \\\\&=3 \sqrt{14} \text { units }{ }^{2}](https://tex.z-dn.net/?f=%26%3D%5Csqrt%7B14%7D%5Cleft%5B3%20x-%5Cfrac%7B3%7D%7B2%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20x%5E%7B2%7D%5Cright%5D_%7B0%7D%5E%7B2%7D%20%5C%5C%5C%5C%26%3D%5Csqrt%7B14%7D%5Cleft%5B3-%5Cfrac%7B3%7D%7B2%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20x%5E%7B2%7D%5Cright%5D_%7B0%7D%5E%7B2%7D%20%5C%5C%5C%5C%26%3D%5Csqrt%7B14%7D%5Cleft%5B3.2-%5Cfrac%7B3%7D%7B2%7D%20%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%203%5E%7B2%7D%5Cright%5D%20%5C%5C%5C%5C%26%3D3%20%5Csqrt%7B14%7D%20%5Ctext%20%7B%20units%20%7D%7B%20%7D%5E%7B2%7D)
In conclusion, the area is
A=3 √4 units ^2
Read more about the plane
brainly.com/question/1962726
#SPJ4
The new coordinate of point B would have to be (-1,5). This can be seen when graphing the coordinates you gave, and by substituting 1 for -1 in the coordinates of point B into that same graph