-4x+3 and -2y idk if that's completely right tho
Answer: A) .1587
Step-by-step explanation:
Given : The amount of soda a dispensing machine pours into a 12-ounce can of soda follows a normal distribution with a mean of 12.30 ounces and a standard deviation of 0.20 ounce.
i.e.
and 
Let x denotes the amount of soda in any can.
Every can that has more than 12.50 ounces of soda poured into it must go through a special cleaning process before it can be sold.
Then, the probability that a randomly selected can will need to go through the mentioned process = probability that a randomly selected can has more than 12.50 ounces of soda poured into it =
![P(x>12.50)=1-P(x\leq12.50)\\\\=1-P(\dfrac{x-\mu}{\sigma}\leq\dfrac{12.50-12.30}{0.20})\\\\=1-P(z\leq1)\ \ [\because z=\dfrac{x-\mu}{\sigma}]\\\\=1-0.8413\ \ \ [\text{By z-table}]\\\\=0.1587](https://tex.z-dn.net/?f=P%28x%3E12.50%29%3D1-P%28x%5Cleq12.50%29%5C%5C%5C%5C%3D1-P%28%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5Cleq%5Cdfrac%7B12.50-12.30%7D%7B0.20%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq1%29%5C%20%5C%20%5B%5Cbecause%20z%3D%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5D%5C%5C%5C%5C%3D1-0.8413%5C%20%5C%20%5C%20%5B%5Ctext%7BBy%20z-table%7D%5D%5C%5C%5C%5C%3D0.1587)
Hence, the required probability= A) 0.1587
Answer:
(f + g)(x) = x^2 + 3x - 6
Step-by-step explanation:
Given f(x) = x^2 + x − 2 and g(x) = 2x − 4
Plug in:
(f + g)(x) = x^2 + x − 2 + 2x − 4
(f + g)(x) = x^2 + 3x - 6
I believe the dryer costs $357.50
there's an easy way to solve this
you just divide the given price($585)
by 2 and then to one half add $65
and the answer is 65+292.5=357.5