Answer:
The solution to the question is as follows
(a) The rate of ammonia formation = 0.061 M/s
(b) the rate of N₂ consumption = 0.0303 M/s
Explanation:
(a) To solve the question we note that the reaction consists of one mole of N₂ combining with three moles of H₂ to form 2 moles of NH₃
N₂(g) + 3H₂(g) → 2NH₃(g)
The rate of reaction of molecular hydrogen = 0.091 M/s, hence we have
3 moles of H₂ reacts to form 2 moles of NH₃, therefore
0.091 M of H₂ will react to form 2/3 × 0.091 M or 0.061 M of NH₃
Hence the rate of ammonia formation is 0.061 M/s
(b) From the reaction equation we have 3 moles of H₂ and one mole of N₂ being consumed at the same time hence
0.091 M of H₂ is consumed simultaneously with 1/3 × 0.091 M or 0.0303 M of N₂
Therefore the rate of consumption of N₂ = 0.0303 M/s
Answer:
it think like it kicks all the stuff away from the ground stuff, thats the best i can do sorry., im not a science person.
Explanation:
Sorenson
Explanation:
The values used in the scale of pH and pOH are derived from a system designed by Sorenson. Søren Peter Lauritz Sørensen, a Danish chemist introduced the system of pH and pOH for describing the alkalinity and acidity of substances.
- The pH and pOH scale is logarithmic scale that ranks the acidity and bascity of compounds.
- pH is the negative logarithm of the concentration of hydrogen/hydroxonium ions in solution i.e
pH = -log₁₀{H⁺]
- pOH is the negative log of the concentration of the hydroxyl ions in a solution i.e
pOH = -log₁₀{OH⁻]
Learn more:
calculating pH: brainly.com/question/12985875
pH scale: brainly.com/question/11063271
#learnwithBrainly
Ba (OH) 2 Ba(OH) 2 is a string electrolyte, determine the concentration of each of the individual in a 0.400m Ba (OH)20.400m