Answer:
to go against dangerous viral and bacteria
Explanation:
I always remembered the differences by Mitosis sounds like My Toes Is. Which means its body cells reproducing.
And Meiosis is My overies. Which is sex cells reproducing.
Mitosis - The body cell's nucleus makes a copy of its chromosomes. The Chromotids are then pulled to the poles of the cell and split in half, the cell then divides in half into two new cells. Each cell has one pair of chromosomes each.
Meiosis - The sex cells nucleus makes a copy of each chromosome same as before. But then the similar chromosomes group up and swap parts with each other. Making completely new chromosomes. They then split in half again, making two new cells with two different pairs of chromosomes. Which then split apart Once more creating 4 new cells (From the original one) Each with completely random chromosomes.
Wanted to write more both there is a problem with the editor. Uranium is formed naturally in the crust of rocks and seawater. Plutonium does not occur in nature. It is found in the biosphere.
Answer:

Explanation:
For a first order reaction the rate law is:
![v=\frac{-d[A]}{[A]}=k[A]](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B-d%5BA%5D%7D%7B%5BA%5D%7D%3Dk%5BA%5D)
Integranting both sides of the equation we get:
![\int\limits^a_b {\frac{d[A]}{[A]}} \, dx =-k\int\limits^t_0 {} \, dt](https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%5Cfrac%7Bd%5BA%5D%7D%7B%5BA%5D%7D%7D%20%5C%2C%20dx%20%3D-k%5Cint%5Climits%5Et_0%20%7B%7D%20%5C%2C%20dt)
where "a" stands for [A] (molar concentration of a given reagent) and "b" is {A]0 (initial molar concentration of a given reagent), "t" is the time in seconds.
From that integral we get the integrated rate law:
![ln\frac{[A]}{[A]_{0} } =-kt](https://tex.z-dn.net/?f=ln%5Cfrac%7B%5BA%5D%7D%7B%5BA%5D_%7B0%7D%20%7D%20%3D-kt)
![[A]=[A]_{0}e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_%7B0%7De%5E%7B-kt%7D)
![ln[A]=ln[A]_{0} -kt](https://tex.z-dn.net/?f=ln%5BA%5D%3Dln%5BA%5D_%7B0%7D%20-kt)
![k=\frac{ln[A]_{0}-ln[A]}{t}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7Bln%5BA%5D_%7B0%7D-ln%5BA%5D%7D%7Bt%7D)
therefore k is

So the molarity equation is moles of solute/liters of solution. so i’m pretty sure the answer should be 0.63/0.70= .9