Answer:
In a cube, the length and width are the same, so both sides will be 7 cm, yielding an area of 49 square centimeters.
Step-by-step explanation:
300 x 1.05 = 315
315 x 1.05 = 330.75
330.75 x 1.05 = 347.2875
347.29
Answer:
y(s) = 
we will compare the denominator to the form 

comparing coefficients of terms in s
1
s: -2a = -10
a = -2/-10
a = 1/5
constant: 

hence the first answers are:
a = 1/5 = 0.2
β = 5.09
Given that y(s) = 
we insert the values of a and β
= 
to obtain the constants A and B we equate the numerators and we substituting s = 0.2 on both side to eliminate A
5(0.2)-53 = A(0.2-0.2) + B((0.2-0.2)²+5.09²)
-52 = B(26)
B = -52/26 = -2
to get A lets substitute s=0.4
5(0.4)-53 = A(0.4-0.2) + (-2)((0.4 - 0.2)²+5.09²)
-51 = 0.2A - 52.08
0.2A = -51 + 52.08
A = -1.08/0.2 = 5.4
<em>the constants are</em>
<em>a = 0.2</em>
<em>β = 5.09</em>
<em>A = 5.4</em>
<em>B = -2</em>
<em></em>
Step-by-step explanation:
- since the denominator has a complex root we compare with the standard form

- Expand and compare coefficients to obtain the values of a and <em>β </em>as shown above
- substitute the values gotten into the function
- Now assume any value for 's' but the assumption should be guided to eliminate an unknown, just as we've use s=0.2 above to eliminate A
- after obtaining the first constant, substitute the value back into the function and obtain the second just as we've shown clearly above
Thanks...
Answer:
Between 38.42 and 49.1.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 43.76, standard deviation of 2.67.
Between what two values will approximately 95% of the amounts be?
By the Empirical Rule, within 2 standard deviations of the mean. So
43.76 - 2*2.67 = 38.42
43.76 + 2*2.67 = 49.1
Between 38.42 and 49.1.