The given triangle is isosceles, so the two remaining angles in the triangle both have measure <em>xº</em>. The interior angles of any triangle sum to 180º, so that
58º + <em>xº</em> + <em>xº</em> = 180º
58 + 2<em>x</em> = 180
2<em>x</em> = 122
<em>x</em> = 61
Angles <em>y</em> and <em>z</em> are supplementary to angle <em>x</em>, so that
<em>xº</em> + <em>yº</em> = 180º
and
<em>xº</em> + <em>zº</em> = 180º
and consequently, <em>y</em> = <em>z</em>. In particular, we get
<em>y</em> = 180 - 61
<em>y</em> = 119
and so
<em>z</em> = 119
A * 4 = E........A = E / 4
B / 4 = E........B = 4E
C + 4 = E......C = E - 4
D - 4 = E.......D = E + 4
A + B + C + D = 100
(E/4) + (4E) + (E - 4) + (E + 4) = 100
E/4 + 6E = 100 ....multiply by 4
E + 24E = 400
25E = 400
E = 400/25
E = 16 <===
<span>Simplifying
(5b + -9) + -3(8 + -2b) = 0
Reorder the terms:
(-9 + 5b) + -3(8 + -2b) = 0
Remove parenthesis around (-9 + 5b)
-9 + 5b + -3(8 + -2b) = 0
-9 + 5b + (8 * -3 + -2b * -3) = 0
-9 + 5b + (-24 + 6b) = 0
Reorder the terms:
-9 + -24 + 5b + 6b = 0
Combine like terms: -9 + -24 = -33
-33 + 5b + 6b = 0
Combine like terms: 5b + 6b = 11b
-33 + 11b = 0
Solving
-33 + 11b = 0
Solving for variable 'b'.
Move all terms containing b to the left, all other terms to the right.
Add '33' to each side of the equation.
-33 + 33 + 11b = 0 + 33
Combine like terms: -33 + 33 = 0
0 + 11b = 0 + 33
11b = 0 + 33
Combine like terms: 0 + 33 = 33
11b = 33</span>
Answer:
16x^4+32x^3+24x^2+8x+1
Step-by-step explanation:
(2x+1)^4
(2x+1)*(2x+1)*(2x+1)*(2x+1)
Answer:
b
Step-by-step explanation: