1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina CMI [18]
3 years ago
6

Help!! 5-8 questions

Mathematics
1 answer:
Nina [5.8K]3 years ago
6 0

Answer:

Step-by-step explanation: This is for #6 Volume = pi·r2·h

Volume = pi·(5x+2)2(2x+8)

You might be interested in
Evaluate the Expression <br><br> 7•4+6-12:4
Natalija [7]

Answer:

the answer to this is four (4)

Step-by-step explanation:

8 0
3 years ago
Help me pls, will mark brainliest (just 1-7)
Ierofanga [76]

Answer:

6

Step-by-step explanation:

take one away

6 0
3 years ago
One vertex of a triangle is located at (0, 5) on a coordinate grid. After a transformation, the vertex is located at (5, 0).
torisob [31]
As you are only given one point the choices are quite numerous:

A. Quarter turn rotation clockwise about the origin

B. Reflection in the line y = x

C. Translation using the vector (5 -5). [5 right and 5 down]

D. Half turn rotation about point (2.5, 2.5)

E. Reduction with scale factor 1/2 with centre at (10, -5)

The last two are not likely but still only require a single transformation
3 0
2 years ago
A spyware is trying to break into a system by guessing its password. It does not give up until it tries 1 million different pass
Juliette [100K]

Answer: So our limit is 1 million attempts.

a) 6 lower case letters.

Think in 6 blank spaces where you can put one letter, so in each space you have 26 options, so the total of combinations is 26^{6} = 308915776.

so if you have 1 million attempts, then 1000000/308915776 = 0.00323

so you have 0.32% chances of breaking the code.

b) 6 different letters, some may be upper-case, and it is case-sensitive

Again 6 blank spaces, in the first you can put 26 letters,  and because its case sensitive, you have 52 options, in the second space, you will have 25 posible letters, and 50 options, and so on.

So the total combinations are 52*50*48*46*44*42 = 10608998400

and the probability of breaking it with 1 mill attempts is = 0.009%

(c) any 6 letters, upper- or lower-case, and it is case-sensitive

same as the first case, but here you have 26 lower case and 26 upper, so you have 52^{6} = 19770609664 combinations

and in 1 mill attempts the probability of breaking it is 0.0005%

(d) any 6 characters including letters and digits

Here you have 26 letters and 10 numbers, so the total combinations are :

36^{6} = 2176782336

and the probability of breaking it will be 0.004%

were in all cases you must think that each attempt made by the spyware is a different combination, so the one million tries are different combinations.

7 0
3 years ago
Find all the missing sides or angles in each right triangles
astra-53 [7]
In previous lessons, we used the parallel postulate to learn new theorems that enabled us to solve a variety of problems about parallel lines:

Parallel Postulate: Given: line l and a point P not on l. There is exactly one line through P that is parallel to l.

In this lesson we extend these results to learn about special line segments within triangles. For example, the following triangle contains such a configuration:

Triangle <span>△XYZ</span> is cut by <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> where A and B are midpoints of sides <span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span> respectively. <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> is called a midsegment of <span>△XYZ</span>. Note that <span>△XYZ</span> has other midsegments in addition to <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span>. Can you see where they are in the figure above?

If we construct the midpoint of side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> at point C and construct <span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span> respectively, we have the following figure and see that segments <span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span> are midsegments of <span>△XYZ</span>.

In this lesson we will investigate properties of these segments and solve a variety of problems.

Properties of midsegments within triangles

We start with a theorem that we will use to solve problems that involve midsegments of triangles.

Midsegment Theorem: The segment that joins the midpoints of a pair of sides of a triangle is:

<span>parallel to the third side. half as long as the third side. </span>

Proof of 1. We need to show that a midsegment is parallel to the third side. We will do this using the Parallel Postulate.

Consider the following triangle <span>△XYZ</span>. Construct the midpoint A of side <span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span>.

By the Parallel Postulate, there is exactly one line though A that is parallel to side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>. Let’s say that it intersects side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span> at point B. We will show that B must be the midpoint of <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> and then we can conclude that <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> is a midsegment of the triangle and is parallel to <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>.

We must show that the line through A and parallel to side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> will intersect side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span> at its midpoint. If a parallel line cuts off congruent segments on one transversal, then it cuts off congruent segments on every transversal. This ensures that point B is the midpoint of side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span>.

Since <span><span><span>XA</span><span>¯¯¯¯¯¯¯¯</span></span>≅<span><span>AZ</span><span>¯¯¯¯¯¯¯</span></span></span>, we have <span><span><span>BZ</span><span>¯¯¯¯¯¯¯</span></span>≅<span><span>BY</span><span>¯¯¯¯¯¯¯¯</span></span></span>. Hence, by the definition of midpoint, point B is the midpoint of side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span>. <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> is a midsegment of the triangle and is also parallel to <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>.

Proof of 2. We must show that <span>AB=<span>12</span>XY</span>.

In <span>△XYZ</span>, construct the midpoint of side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> at point C and midsegments <span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span> as follows:

First note that <span><span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span>∥<span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span></span> by part one of the theorem. Since <span><span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span>∥<span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span></span> and <span><span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span>∥<span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span></span>, then <span>∠<span>XAC</span>≅∠<span>BCA</span></span> and <span>∠<span>CAB</span>≅∠<span>ACX</span></span> since alternate interior angles are congruent. In addition, <span><span><span>AC</span><span>¯¯¯¯¯¯¯¯</span></span>≅<span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span></span>.

Hence, <span>△<span>AXC</span>≅△<span>CBA</span></span> by The ASA Congruence Postulate. <span><span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span>≅<span><span>XC</span><span>¯¯¯¯¯¯¯¯</span></span></span> since corresponding parts of congruent triangles are congruent. Since C is the midpoint of <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>, we have <span>XC=CY</span> and <span>XY=XC+CY=XC+XC=2AB</span> by segment addition and substitution.

So, <span>2AB=XY</span> and <span>AB=<span>12</span>XY</span>. ⧫

Example 1

Use the Midsegment Theorem to solve for the lengths of the midsegments given in the following figure.

M, N and O are midpoints of the sides of the triangle with lengths as indicated. Use the Midsegment Theorem to find

<span><span> A. <span>MN</span>. </span><span> B. The perimeter of the triangle <span>△XYZ</span>. </span></span><span><span> A. Since O is a midpoint, we have <span>XO=5</span> and <span>XY=10</span>. By the theorem, we must have <span>MN=5</span>. </span><span> B. By the Midsegment Theorem, <span>OM=3</span> implies that <span>ZY=6</span>; similarly, <span>XZ=8</span>, and <span>XY=10</span>. Hence, the perimeter is <span>6+8+10=24.</span> </span></span>

We can also examine triangles where one or more of the sides are unknown.

Example 2

<span>Use the Midsegment Theorem to find the value of x in the following triangle having lengths as indicated and midsegment</span> <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>.

By the Midsegment Theorem we have <span>2x−6=<span>12</span>(18)</span>. Solving for x, we have <span>x=<span>152</span></span>.

<span> Lesson Summary </span>
8 0
3 years ago
Other questions:
  • Which of the following values are solutions to the inequality x-7&lt; 5?x−7&lt;5?
    12·1 answer
  • Which equation shows an equation equivalent to x^2+12x+7=0
    12·1 answer
  • Can someone help me plesssss
    7·2 answers
  • Need answer ASAP <br> *MARKING BRAINLIEST
    15·1 answer
  • Angle r° = 2w°. What is the measure of angle r°?
    8·1 answer
  • Can someone pleaseeee help and if you’re correct i’ll give brainliest
    9·2 answers
  • A high school math class has 28 students: 18 seniors and 10 juniors. What is the probability that four randomly selected student
    6·1 answer
  • If the circumference is 12 and height is 25. What’s is that area of the cylinder base? And what is the volume?
    7·1 answer
  • How many solutions does the equation have ? |- m| = 12
    15·1 answer
  • What is the value of x in the triangle?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!