A.) For the Junior Varsity Team, mean would be the appropriate measure of center since the data is <span>symmetric or well-proportioned while we should use standard deviation for getting the measure of spread since it also measures the center and how far the values are from the mean.
b.) For the Varsity Team, the median would be the appropriate measure of the center since the data is skewed left and not evenly distributed so median could be used since it does not account for outliers while we use IQR or interquartile range in measuring the spread of data since IQR does not account for the data that is skewed. </span>
Answer: (60.858, 69.142)
Step-by-step explanation:
The formula to find the confidence interval for mean :
, where
is the sample mean ,
is the population standard deviation , n is the sample size and
is the two-tailed test value for z.
Let x represents the time taken to mail products for all orders received at the office of this company.
As per given , we have
Confidence level : 95%
n= 62
sample mean :
hours
Population standard deviation :
hours
z-value for 93% confidence interval:
[using z-value table]
Now, 93% confidence the mean time taken to mail products for all orders received at the office of this company :-

Thus , 93% confidence the mean time taken to mail products for all orders received at the office of this company : (60.858, 69.142)
Given :
The square of a number, x, is 16 less than eight times the number.
To Find :
The value of x .
Solution :
The mathematical equation with all given data is :

Therefore , the value of x is 4 .
Hence , this is the required solution .
Answer:
These equations are incomplete so I cant solve it
Step-by-step explanation: