Objects with less density than water will float when you put them in water.
Objects with greater density than water will sink when you put them in water.
Answer:
Decrease
Explanation:
If you were on the Moon, which has significantly less mass than the Earth, your weight would: decrease
The point that seemed to be giving me a complicated time was being able to distinguish the difference and meaning of weight and mass and being able to apply that to a problem. I kept mixing up the definitions. For example in homework 3.1, one question asked:
If you were on the moon, which has significantly less mass than the earth, your mass would:
a. increase
b. decrease
c. stay the same
d. become zero
The definition of mass is the amount of matter in an object. The definition of weight is the amount or unit of force. For me, I just had to remember that when it asked about weight, it wasn’t referring how heavy an object is. After I was able to recognize that when it came to weight, questions became easier.
The final and correct answer was decreasing. The answer is because the Moon’s mass is less. This means the gravitational force is less on your body, therefore, your mass is going to be lighter
<span> The wire turns are often wound around a magnetic core made from a ferromagnetic or ferrimagnetic material such as iron; the magnetic core concentrates the magnetic flux and makes a more powerful magnet.</span>
<span>32 mph
First, let's calculate the location of the particle at t=1, and t=4
t=1
s = 6*t^2 + 2*t
s = 6*1^2 + 2*1
s = 6 + 2
s = 8
t = 4
s = 6*t^2 + 2*t
s = 6*4^2 + 2*4
s = 6*16 + 8
s = 96 + 8
s = 104
So the particle moved from 8 to 104 over the time period of 1 to 4 hours. And the average velocity is simply the distance moved over the time spent. So:
avg_vel = (104-8)/(4-1) = 96/3 = 32
And since the units were miles and hours, that means that the average speed of the particle over the interval [1,4] was 32 miles/hour, or 32 mph.</span>
Answer:
16
Explanation:
The atomic mass of an element is defined as the average of the isotopic masses, weighted according to the naturally occurring abundances of the isotopes of the element. Although oxygen has nine isotopes with mass numbers ranging from 13 to 21, oxygen-13, oxygen-14 and oxygen-15 are not naturally occurring isotopes. So, we do not need to include them when we calculate the relative atomic mass of oxygen.