Answer:
20kg
Explanation:
Mass is a measure of the amount of matter in an object. The mass of an object, the amount of matter inside it does not change based on location. E.g. Objects do not lose matter when they travel to the moon.
Weight, on the other hand is the downward force you exert on the ground. Weight is calculated by multiplying the mass by the gravitational field strength and changes in different places with different gravitational strength. E.g. The moon's gravitational strength is 1/5 of Earth's so the mass of the object would stay the same but the weight would be only 20% of the weight is had on earth.
Hope this helped!
At position of maximum height we know that the vertical component of its velocity will become zero
so the object will have only horizontal component of velocity
so at that instant the motion of object is along x direction
while if we check the acceleration of object then it is due to gravity
so the acceleration of object is vertically downwards
so it is along y axis
so here these two physical quantities are perpendicular to each other
so correct answer would be
<em>C)At the maximum height, the velocity and acceleration vectors are perpendicular to each other. </em>
Answer:
0.75 g/cm^3
Explanation:
The formula for density:

Where m is the mass and V is the volume.
So, we can substitute values for m and V:

Therefore, the density is 0.75 g/cm^3 (watch the units!)
Answer:
statement - 'The work done by friction is equal to the sum of the work done by the gravity and the initial push' is correct.
Explanation:
The statement ''The work done by friction is equal to the sum of the work done by the gravity and the initial push" is correct.
The above statement is correct because, the initial push will tend to slide down the block thus the work done by the initial push will be in the downward direction. Also, the gravity always acts in the downward direction. thus, the work done done by the gravity will also be in the downward direction
here, the downward direction signifies the downward motion parallel to the inclined plane.
Now we know that the work done by the friction is against the direction of motion. Thus, the friction force will tend to move the block up parallel to the inclined plane.
Hence, for the block to stop sliding the the above statement should be true.