Answer:
Interpreting as: x^2/3=x^1/3+4=6 A
Input:
x^2/3 = x^(1/3) + 4 = 6 A
Answer:
5.44 cm³
Step-by-step explanation:
The volume of the hexagonal nut can be found by multiplying the area of the end face by the length of the nut. The end face area is the difference between the area of the hexagon and the area of the hole.
The area of a hexagon with side length s is given by ...
A = (3/2)√3·s²
For s=1 cm, the area is ...
A = (3/2)√3(1 cm)² = (3/2)√3 cm²
__
The area of a circle is given by ...
A = πr²
The radius of a circle with diameter 1 cm is 0.5 cm. Then the area of the hole is ...
A = π(0.5 cm)² = 0.25π cm²
__
The volume is the face area multiplied by the length, so is ...
V = Bh = ((3/2)√3 -0.25π)(3) . . . . . cm³
V = (9/2)√3 -0.75π cm³ ≈ 5.44 cm³
The volume of the metal is about 5.44 cm³.
Answer:
I WAS BORN TO FLEX DIMONDS ON MY NECK I LIKE MORNING CHECKS I LIKE MORING S**
Step-by-step explanation:
Place a dot on the origin.
A line that has a slope of

goes by this formula:

So "rise -2" and "run 3."
Rise -2 is basically go down 2, so go down 2 units from the origin. Run 3 means go right 3 units from (0, -2).
Draw a line through (3, -2) and (0, 0).
Answer:
The percentle for Abby's score was the 89.62nd percentile.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation(which is the square root of the variance)
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Abby's mom score:
93rd percentile in the math SAT exam. In 1982 the mean score was 503 and the variance of the scores was 9604.
93rd percentile. X when Z has a pvalue of 0.93. So X when Z = 1.476.

So




Abby's score
She scored 648.

So



has a pvalue of 0.8962.
The percentle for Abby's score was the 89.62nd percentile.