-4.5 might be the answer im not very sure but yeah
Answer:
<em>No, he should have set the sum of ∠AED and ∠DEC equal to 180°, rather then setting ∠AED and ∠DEC equal to each other</em>
Step-by-step explanation:
Find the diagram attached
If line AC and BD intersects, then m<AED + m<DEC = 180 (sum of angle on a straight line is 180 degrees)
Given
m<AED = 16x+8
m<DEC = 76 degrees
16x + 8 + 76 = 180
16x + 84 = 180
16x = 180-84
16x = 96
x = 96/16
x = 6
Hence the value of x is 6
Hence the correct option is <em>No, he should have set the sum of ∠AED and ∠DEC equal to 180°, rather then setting ∠AED and ∠DEC equal to each other</em>
We know that
case 1)
Applying the law of sines
a/Sin A=b/Sin B
A=56°
a=12
b=14
so
a*Sin B=b*Sin A----> Sin B=b*Sin A/a---> Sin B=14*Sin 56°/12
Sin B=0.9672
B=arc sin (0.9672)------> B=75.29°-----> B=75.3°
find angle C
A+B+C=180°-----> C=180-(A+B)----> C=180-(56+75.3)----> C=48.7°
find c
a/Sin A=c/Sin C----> c=a*Sin C/Sin A----> c=12*Sin 48.7°/Sin 56°)
c=10.87-----> c=10.9
the answer Part 1)
the dimensions of the triangle N 1
are
a=12 A=56°
b=14 B=75.3°
c=10.9 C=48.7°
case 2)
A=56°
a=12
b=14
B=180-75.3----> B=104.7°
find angle C
A+B+C=180°-----> C=180-(A+B)----> C=180-(56+104.7)----> C=19.3°
find c
a/Sin A=c/Sin C----> c=a*Sin C/Sin A----> c=12*Sin 19.3°/Sin 56°)
c=4.78-----> c=4.8
the answer Part 2)
the dimensions of the triangle N 2
are
a=12 A=56°
b=14 B=104.7°
c=4.8 C=19.3°
Answer:
Había cinco amigos al principio y siete laminas en total. (Using google translate)
Step-by-step explanation:
pude darle 5 a cada = 5 amigos
5 a cada uno y me sobran 2 amigos más, por lo que las repartí de nuevo y pude darle = siete laminas