Hello,
a) Volume of the figure = Volume of light blue rectangular parallelepiped - volume of dark blue rectangular parallelepiped
Volume of rectangular parallelepiped = lengh × high × height
Volume of light blue rectangular parallelepiped :
V = (x + 2) × (x + 5) × (2x + 1)
V = (x² + 5x + 2x + 10) × (2x + 1)
V = (x² + 7x + 10) × (2x + 1)
V = 2x³ + 15x² + 27x + 10
<u>Volume of dark blue rectangular parallelepiped :</u>
V = x × 3 × (x + 5)
V = 3x(x + 5)
V = 3x² + 15x
Polynomial function, in standard form, to model the volume of this solid :
V = 2x³ + 15x² + 27x + 10 - (3x² + 15x)
V = 2x³ + 15x² - 3x² + 27x - 15x + 10
V = 2x³ + 12x² + 12x + 10
b) We have to solve 2x³ + 12x² + 12x + 10 = 208
⇔ 2x³ + 12x² + 12x - 198 = 0
⇔ 2(x - 3)(x² + 9x + 33) = 0
⇔ x = 3 or x² + 9x + 33 = 0
a = 1 ; b = 9 ; c = 33
Δ = b² - 4ac = 9² - 4 × 1 × 33 = -51 < 0 ⇔ Δ < 0 ⇒ no solution
So if the volume of the solid is 208 cubic inches, the value of x is 3