Correct Ans:Option A. 0.0100
Solution:We are to find the probability that the class average for 10 selected classes is greater than 90. This involves the utilization of standard normal distribution.
First step will be to convert the given score into z score for given mean, standard deviation and sample size and then use that z score to find the said probability. So converting the value to z score:

So, 90 converted to z score for given data is 2.326. Now using the z-table we are to find the probability of z score to be greater than 2.326. The probability comes out to be 0.01.
Therefore, there is a 0.01 probability of the class average to be greater than 90 for the 10 classes.
Answer:
C -1
Step-by-step explanation:





Answer:
In order to calculate the expected value we can use the following formula:
And if we use the values obtained we got:
Step-by-step explanation:
Let X the random variable that represent the number of admisions at the universit, and we have this probability distribution given:
X 1060 1400 1620
P(X) 0.5 0.1 0.4
In statistics and probability analysis, the expected value "is calculated by multiplying each of the possible outcomes by the likelihood each outcome will occur and then summing all of those values".
The variance of a random variable Var(X) is the expected value of the squared deviation from the mean of X, E(X).
And the standard deviation of a random variable X is just the square root of the variance.
In order to calculate the expected value we can use the following formula:
And if we use the values obtained we got:
Answer: 315m³
Step-by-step explanation: formulae = W x L x H
7m x 3m x 15m
= 315m³//