<span>We are given that ||e|| = 1, ||f|| = 1. </span>
<span>Since ||e + f|| = sqrt(3/2), we have </span>
<span>3/2 = (e + f) dot (e + f) </span>
<span>= (e dot e) + 2(e dot f) + (f dot f) </span>
<span>= ||e||^2 + 2(e dot f) + ||f||^2 </span>
<span>= 1^2 + 2(e dot f) + 1^2 </span>
<span>= 2 + 2(e dot f). </span>
<span>So e dot f = -1/4. </span>
<span>Therefore, </span>
<span>||2e - 3f||^2 = (2e - 3f) dot (2e - 3f) </span>
<span>= 4(e dot e) - 12(e dot f) + 9(f dot f) </span>
<span>= 4||e||^2 - 12(e dot f) + 9||f||^2 </span>
<span>= 4(1)^2 - 12(-1/4) + 9(1)^2 </span>
<span>= 4 + 3 + 9 </span>
<span>= 16. </span>
Answer:
-3x+6
Step-by-step explanation:
Again, you multiply -3 times x and you get -3x, then you multiply -3 times -6 and since you are multiplying two negative numbers the result becomes positive so you get +6. Result = -3x+6
1st option
{(3,0) e (0,9)}; {(2,0) e (0,-4)}; {(1,0) e (0,-5)}
see screenshot
sorry btw, no hablo espanol
3m because in a square all sides are the same and there are 4 sides, so 12 ÷ 4 = 3