We can use linear combinations of the equations to eliminate variables.
3x - 4y = 1
-2x + 3y = 1
To eliminate y we'll make the linear combination of 3 times the first equation minus four times the second.
9x - 12y = 3
-8x + 12y = 4
Adding,
x = 7
We could solve for y directly but let's use another linear combination, twice the first plus three times the second:
2(3x - 4y) + 3(-2x + 3y)= 2(1)+3(1)
y = 5
Check: 3(7)-4(5)=1 good. -2(7)+3(5)=1 good.
Q18 Answer: (7,5)
y = -3x + 5
5x - 4y = -3
4y +1(5x - 4y) = 4(-3x + 5) + 1(-3)
5x = -12x + 20 -3
17 x = 17
x = 1
y = -3(1) + 5 = 2
Check: 5(1) - 4(2) = -3 good
Q19 Answer (1,2)
6x + 5y = 25
x = 2y + 24
6x = 12y + 144
5y = 25 - 12y - 144
17y = -119
y = -119/17= -7
x = 2y+24= 10
Check: 6(10)+5(-7)=25 good 2y+24=2(-7)+24=10=x good
Q20 Answer (10,-7)
3x + y = 18
-7x + 3y = -10
9x + 3y = 54
9x - -7x = 54 - -10
16x = 64
x=4
y = 18 -3x = 18-12=6
Check: 3(4)+6=18 good, -7(4)+3(6)=-10 good
Q21 Answer: (4,6)
Answer:
40(x-10)
Step-by-step explanation:
The answer is C, number of snails to the total number of animals
Answer:
4 students are working on fractions
Step-by-step explanation:
To factor a difference of squares, the following steps are undertaken: Check if the terms have the greatest common factor (GCF) and factor it out. Remember to include the GCF in your final answer. Determine the numbers that will produce the same results and apply the formula: a2– b2 = (a + b) (a – b) or (a – b) (a + b)