First solve the quadratic as you would an equation, so you will get two real zeroes p and q so that (x-p)(x-q)=0 is another way of expressing the quadratic. All quadratics can be represented graphically by a parabola, which could be inverted. When the x² coefficient is negative it’s inverted. If the coefficient of x² isn’t 1 or -1 divide the whole quadratic by the coefficient so that it takes the form x²+ax+b, where a and b are real fractions. The curve between the zeroes will be totally below the x axis for an upright parabola, and totally above for an inverted parabola. This fact is used for inequalities. An inequality will be <, ≤, > or ≥. This makes it easy to solve the inequality. If the position of the curve between the zeroes is below the axis then outside this interval it will be above, and vice versa. So we’ve defined three zones. x
q, and p
✱ ✱ ✱ ✱ ✱ ✱ ✱ ✱ ✱ ✱ ✱ ✱ ✱
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
✯ ✯
✯
✯
✯ ✯
✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯
☆ ★ ☆ ✳︎ ✶ ∙ ✮
☆ ☆
6+4:2*10
6+2*10
<h2>26</h2>
✮ ∙ ✳︎ ★
✴︎ ✴︎ ✴︎✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎ ✴︎
Answer:
Step-by-step explanation:
A
There are 2 possibilities for where A can be: one where C is 30° (and A is 60°) and another where C is 60° (and A is 30°). Since it's not specified, we can find both.
30°:
drawing the triangle on a graph, you can see that point C is 4 units above point B, so we know that one side of the triangle is 4. Once we find the other "leg" of the triangle (the one that's parallel to the x-axis), we can just add that value to B to find the x coordinate of A.
If angle C is 30°, using the side ratios of a 30-60-90 triangle, that side is "a√3", and the side we're looking for is a. So, to find a, we just divide 4 by √3. In that case, point A is 4/(√3) units to the right of -2√3. We can rationalize 4/(√3) like this:
(4√3)/3
and then add that to 2√3:
(4√3)/3 + -2√3
(4√3)/3 + (-6√3)/3 = (-2√3)/3
We know that the x-coordinate of A is (-2√3)/3, and the y-coordinate is -1 because B is a right angle and we're just moving horizontally. So, if C is 30° and A is 60°, point A is at ((-2√3)/3, -1).
60°:
in this case, the leg we know is "a" and the leg we're looking for is "a√3". So, we can multiply 4 by √3 to get the distance from B:
4 x √3 = 4√3
4√3 + -2√3 = 2√3
So the x-coordinate of A here is 2√3, and the y-coordinate is still -1: (2√3, -1).
hope that helps! if you liked this answer please rate it as brainliest!! thank you!!!
Answer: Second option.
Step-by-step explanation:
Given the folllowing Linear Equation:

You need to substitute the coordinates of each point given in the options into the equation and then evaluate.
1) Substituting
into the equation, you get:

2) Substituting the point
. you get:

3) Apply the same procedure using the point
:

4) Apply the same procedure using the point 

5) Substituting
into the equation:

Therefore, the point
is not on the given line.