Answer:
Least 8.06, 8.295, 8.3, 8.31 Greatest
<span>y=x-4
y=-x+6
---------------------
Substitute x - 4 for y in </span>y=-x+6
x-4=-x+6<span>
--------------------------------
Add X on each side
</span><span>x-4+x</span>=-<span>x+6+x
</span>2x - 4 = 6
--------------------------------------
Add 4 on each side
<span>2x-4+4</span>=<span>6+4
</span>2x = 10
------------------------------------------------
Divide by 2 on each side
2x ÷ 2 = 10 ÷ 2
x = 5
Now we have X
================================================================
To find Y we substitute 5 for x in y=<span>x-<span>4
</span></span>y = 5 - 4
y = 1
-----------------------------------------------------
Your answers are Y = 1 and X = 5
Let the given complex number
z = x + ix = 
We have to find the standard form of complex number.
Solution:
∴ x + iy = 
Rationalising numerator part of complex number, we get
x + iy = 
⇒ x + iy = 
Using the algebraic identity:
(a + b)(a - b) =
- 
⇒ x + iy = 
⇒ x + iy =
[ ∵
]
⇒ x + iy =
⇒ x + iy =
⇒ x + iy =
⇒ x + iy = 1 - i
Thus, the given complex number in standard form as "1 - i".
Answer:
We are solving for the area so; A=134.16
Step-by-step explanation:
The answer is C. 0.0 1339